Supplementary material

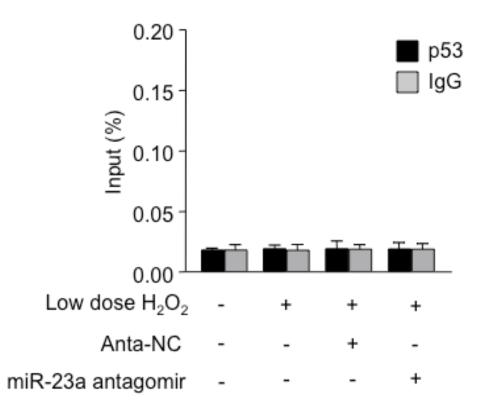
miR-23a Binds to p53 and Enhances its Association with miR-128 Promoter

Jincheng Li^{1*}, Lynn Htet Htet Aung^{2*}, Bo Long ^{3*}, Danian Qin¹, Shejuan An² and Peifeng Li²

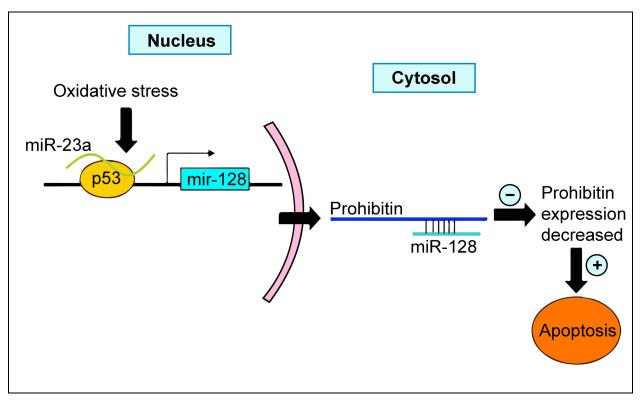
¹ Department of Physiology, Shantou University School of Medicine, Shantou 515031, China

² Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA

³ Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China


*These authors contributed equally to this work.

Supplementary figure legend


Supplementary figure S1. A control ChIP-qPCR assay was performed using primer encompassing miR-128 promoter region without p53 binding domain. Cardiomyocytes were treated with miR-23a antogomir and the cells were collected for ChIP-qPCR assays. miR-128 promoter without p53 binding site did not associate with p53 regardless of presence or absence of miR-23a antagomir.

Supplementary figure S2. The schematic diagram showing miR-23a promotes p53 transactivation on miR-128, which induces apoptosis by inhibiting prohibitin expression in oxidative stress-induced cardiomyocyte.

Supplementary figure S1

Supplementary figure S2

