Supplemental Material

Gapless quantum spin liquid ground state in the two-dimensional

spin-1/2 triangular antiferromagnet YbMgGaO₄

Yuesheng Li¹, Haijun Liao², Zhen Zhang³, Shiyan Li³, Feng Jin¹, Langsheng Ling⁴, Lei Zhang⁴, Youming Zou⁴, Li Pi⁴, Zhaorong Yang⁵, Junfeng Wang⁶, Zhonghua Wu⁷, and Qingming Zhang^{*,1,8}

¹Department of Physics, Renmin University of China, Beijing 100872, P. R. China ²Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China

³State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China

⁴High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China

⁵Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

⁶Wuhan National High Magnetic Field Center, Wuhan 430074, P. R. China

⁷Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P. R. China

⁸Department of Physics and Astronomy, Collaborative Innovation Center of Advanced Microstructures, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

*e-mail: qmzhang@ruc.edu.cn

We present here:

- 1. Material synthesis and measurement details
- 2. Synchrotron X-ray diffractions and structure refinements of YbMgGaO₄ and LuMgGaO₄
- 3. Low-temperature XRD patterns of YbMgGaO₄.
- 4. ESR spectra of YbMgGaO₄ and Yb_{0.04}Lu_{0.96}MgGaO₄ samples
- 5. Linear fit to the magnetization data of YbMgGaO₄ in the constant susceptibility range (form 1.6 to 2.8 T) at 0.5 K

1. Material synthesis and measurement details

Yb_xLu_{1-x}MgGaO₄ (x = 1, 0.4, 0.16, 0.08, 0.04 and 0) powder samples were prepared via the following chemical reaction:

 $xYb_2O_3 + (1 - x)Lu_2O_3 + 2MgO + Ga_2O_3 = 2Yb_xLu_{1-x}MgGaO_4$ Stoichiometric mixtures of high-purity Yb₂O₃ (99.99%), Lu₂O₃ (99.9%), MgO (99.99%) and Ga₂O₃ (99.999%) were ground, pressed into tablets and heated in air at 1450 °C for 4 days with an intermediate grinding step. Almost no sample mass loss was observed after heating.

To remove the influence of a possible preferred orientation of the powder samples during the crystal-structure refinements, the solid-phase, synthesized samples were carefully ground into powders with particle sizes smaller than ~ 5 μ m, as determined by microscope observations. The powder samples were diluted with a moderate amount of glue, packed into capillaries (D = 0.2 mm) and prepared for X-ray diffraction using the MYTHEN detector at the diffraction station (4B9A) of the Beijing Synchrotron Radiation Facility.

For the magnetization and electron spin resonance (ESR) spectrum measurements, at least two independent powder samples were prepared and measured for each magnetic $Yb_xLu_{I-x}MgGaO_4$ composition. In addition, no clear effects caused by the possible preferred orientation of the samples were observed from the measurements.

The ESR measurements were performed using a Bruker EMX plus 10/12 CW-spectrometer at X-band frequencies (f ~ 9.4 GHz); the spectrometer was equipped with a continuous He gas-flow cryostat.

The residuals in all fits and refinements are defined as

$$R_{p} = \frac{\sum |y_{o} - y_{c}|}{\sum |y_{o}|}$$
(1)

where, y_0 and y_c are observed and calculated values respectively. International system of units (SI) was used.

Figure S1. Diagram of the MYTHEN detector installed at the diffraction station (4B9A) of the Beijing Synchrotron Radiation Facility.

2. Synchrotron X-ray diffractions and structure refinements of YbMgGaO₄ and LuMgGaO₄

Figure S2. Synchrotron X-ray diffraction and final Rietveld refinement profiles for YbMgGaO₄ at 300 K.

Figure S3. Synchrotron X-ray diffraction and final Rietveld refinement profiles for LuMgGaO₄ at 300 K.

Compound		YbMgGaO ₄		LuMgGaO ₄	
Model		Ι	II	Ι	II
Space group		Rȝm			
Lattice	<i>a</i> (Å)	3.40212(8)	3.40282(6)	3.38750(5)	3.38750(5)
	<i>c</i> (Å)	25.1191(6)	25.1243(5)	25.2069(4)	25.2071(4)
Yb/Lu ³⁺	Fraction	1	0.5	1	0.5
	Z	0	0.00439(6)	0	0.00425(6)
	Uiso (×100)	1.016(18)	0.751(21)	0.981(18)	0.637(20)
Mg ²⁺ /Ga ³⁺	Fraction	0.5	0.5	0.5	0.5
	Z	0.214902(29)	0.214918(29)	0.215397(30)	0.215385(30)
	Uiso (×100)	0.216(26)	0.301(26)	0.332(27)	0.226(27)
O1 ⁻²	Ζ	0.29260(10)	0.29221(10)	0.29177(11)	0.29213(11)
	Uiso (×100)	0.92(8)	0.72(8)	1.15(8)	1.04(8)
O2 ⁻²	Z	0.12967(9)	0.12993(9)	0.12967(10)	0.12971(10)
	Uiso (×100)	0.54(8)	0.47(7)	1.02(8)	0.68(7)
Residuals	R_{wp}	0.0419	0.0412	0.0452	0.0442
	R_p	0.0274	0.0268	0.0300	0.0292

Table S1. Refined crystal structures of $YbMgGaO_4$ and $LuMgGaO_4$

3. Low-temperature XRD patterns of YbMgGaO₄.

Figure S4. X-ray (Cu-K_{α}) diffraction profiles for YbMgGaO₄ at 300, 200, 100 and 12 K respectively. No additional reflections are observed at temperatures down to 12 K, indicating that no structural transitions occurred.

4. ESR spectra of YbMgGaO₄ and Yb_{0.04}Lu_{0.96}MgGaO₄ samples

Figure S5. X-band (9.4 GHz) Yb^{3+} first-derivative absorption ESR spectra for YbMgGaO₄ and Yb_{0.04}Lu_{0.96}MgGaO₄. The narrow and intense hyperfine lines¹ observed in the quasi-free spin compound Yb_{0.04}Lu_{0.96}MgGaO₄ completely disappear in the spectrum of YbMgGaO₄, suggesting that no observable isolated Yb³⁺ or magnetic defects (< 0.04 %) are present in YbMgGaO₄.

5. Linear fit to the magnetization data of YbMgGaO₄ in the constant susceptibility range (form 1.6 to 2.8 T) at 0.5 K

Figure S6. Linear fit to the magnetization data of YbMgGaO₄ in the constant susceptibility range (form 1.6 to 2.8 T) at 0.5 K. The fitted intercept, ~ 0.173(4) μ_B/Yb^{3+} (the convex magnetization), gives ~ 11% of the saturation magnetization.

References

Misra, S. K. & Isber, S. EPR of the Kramers ions Er³⁺, Nd³⁺, Yb³⁺ and Ce³⁺ in Y(NO₃)₃·6H₂O and Y₂(SO₄)₃·8H₂O single crystals: Study of hyperfine transitions. *Physica B* 253, 111-122 (1998).