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In this supplementary text connected to the article “The encoding of decision
difficulty and movement time in the primate premotor cortex” we want to explore the
functioning of Benjamini-Hochberg (BH) procedure to control the False Discovery
Rate (FDR) in multiple hypothesis testing under controlled conditions, where we know
the ground truth. Here we want to give some insight on the potentiality of this
method when the maximum number of accepted false discoveries Q is not fixed.
Benjamini-Hochberg procedure can be summarized as following:

� given a list of null-hypotheses H01, . . . , H0m and associated p-values p1, . . . , pm,
order the lists in ascending order of p-values,

� find the largest p-value pk such that pk ≤ Qkm−1, where Q is the maximum
FDR we are willing to accept,

� reject all null-hypotheses H01, . . . , H0k and accept all the others.

Choosing the value of Q a priori may not be easy, depending on the nature of data,
the purpose of the analysis and maybe other factors. For example, in an exploratory
analysis, we may be incline to report a large number of positive results (or discoveries)
accepting a higher rate of false discoveries instead of reporting no or very few
discoveries with a very low rate of false discoveries. The case of our analysis is a more
concrete example of this situation. In this work we were looking for neurons encoding
the difficulty of the decision in monkeys premotor cortex. However we were not
interested in finding the exact number of neurons encoding the difficulty (or even a
number higher than a given value). Hence if the analysis, after correcting for multiple
testing with Q = 0.1, turns out to find, for example, 100 difficulty encoding neurons,
10% of which corresponds to false discoveries, we can still be sure that at least 90
neurons are encoding the difficulty. If, setting Q = 0.01, we make no discovery, then
the former result with Q = 0.1 may be more valuable for future research. If, setting
Q = 0.05, we make 20 discoveries, we can be sure that 19 of them are true: is it better
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to make 19 true discoveries and 1 false discovery or to make 90 true discoveries and 10
false discoveries? Or more in general, what is the maximum number of false
discoveries we should accept and what is the minimum number of true discoveries we
should find? The answer to this question depends on the purpose of the study and
could be given by defining a cost of false discoveries to minimize and a benefit of true
discoveries to maximize.

In summary fixing the value of Q beforehand is not straightforward and may
restrict the results of the research. Therefore we propose to explore the range of values
for Q. This method avoid choosing one single value for Q, supplying information
about how the value of Q affects the results. Moreover one value of Q may be chosen
afterwards, according to the purposes of the specific research, if further analysis on the
set of rejected null-hypotheses is needed.

However we must be sure that the BH procedure is well suited to this approach.
For this reason we present here a small study of this method with a synthetic dataset,
where we are able to control the ground truth. Here we want to test the functioning of
the BH procedure under two conditions:

1. when all the null-hypotheses tested are true,

2. when only a fixed proportion of null-hypotheses are false.

Under condition 1 we want that, for all the possible values of Q, the number of
true discoveries, i.e. the difference between the number of discoveries and the number
of false discoveries, lies within the error of the number of discoveries, or ideally that
none of the null-hypotheses is rejected. Under condition 2 we want that the number of
true discoveries is never higher than the number of false null-hypotheses.

To this aim we built a synthetic dataset composed of a one-dimensional dependent
variable and one explanatory variable and applied a simple linear regression. This
condition mimics the one we have in the analysis presented in the main text but the
results are robust to other datasets and statistical tests, as explained below. We
created M independent explanatory variables x1, . . . , xm, each of them being a
random sampling of size N from a uniform distribution between 0 and 1. The
corresponding M dependent variables are ym = smxm + η for m = 1, . . . ,M , where sm
controls the association between xm and ym and η is Gaussian random noise from the
distribution N (0, 1). We then applied a linear model to this dataset. The linear model
was ŷm = a0 + a1xm + ξ, where a0, a1 are the coefficients to be estimated and ξ is the
residual. After estimating the coefficients of the model, for each variable, we did a
t-test in order to test the null-hypothesis that the value of a1 comes from a normal
distribution with mean 0 and unknown variance.

Condition 1 was simulated by setting all sm = 0. In this case there is no
association between each pair of variables xm and ym, hence all null-hypotheses tested
are true by construction. As stated above we want that, for all the possible values of
Q, the number of true discoveries lies within the error of the number of discoveries. In
fig. 1 we show the number of total discoveries in a bar graph as a function of Q; the
red dashed line represents the maximum number of false discoveries, while the black
line represents the minimum number of true discoveries, i.e. the difference between
total discoveries and the maximum number of false discoveries. We varied the value of
N and M in order to show the consistency of the results. It is easily observed that the
red line lies always, for all values of Q and all combinations of N and M , within the
errorbars of the total number of discoveries, i.e. all null-hypotheses are accepted.

Condition 2 was simulated by setting sm = 1 for m = 1, . . . , ⌈0.2M⌉ and sm = 0 for
m = ⌈0.2M⌉+ 1, . . . ,M , i.e. 20% of the null-hypotheses is false and the remaining
80% is true. As stated above, under this condition, the number of true discoveries has
to be always lower than or equal to the number of false null-hypotheses. Similar to the
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previous condition, the results of FDR control for varying value of Q is shown in fig. 2
for different combinations of N and M . Increasing M has the main effect of reducing
the fluctuations of results over tests, while increasing N reduces the noise within data
of each test and lowers the p-values. The most evident and important observation is
that the number of true discoveries (black solid line) is always, for all values of Q and
all combinations of N and M , lower than the number of false null-hypotheses in the
dataset (blue dashed line). This means that in this case, where we know the ground
truth, we can show that even for large values of Q, where we obtain a substantial
number of false discoveries, BH procedure successfully controls for FDR and the
expected number of true discoveries is never higher than the number of false
null-hypotheses. It is also interesting to note that, when the noise in the data is such
that p-values are not very small (i.e. small N), small values of Q supply only very few
true discoveries compared to number of false null-hypotheses. Therefore a larger value
of Q may be more convenient if we wish to maximize the number of true discoveries.

Here we have shown that exploring the range of values for Q may be a meaningful
alternative to choosing one value a priori.
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Figure 1. Number of discoveries after controlling for FDR with BH procedure. Each
panel depicts a combination of N and M values, as indicated in the figure. In each
panel the height of grey bars represents the number of total discoveries (error bars
indicate the standard deviation estimated with a binomial distribution). The red
dashed line represents the number of false discoveries. The black solid line represents
the number of true discoveries, i.e. the difference between total discoveries and false
discoveries.
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Figure 2. Number of discoveries after controlling for FDR with BH procedure. Each
panel depicts a combination of N and M values, as indicated in the figure. In each
panel the height of grey bars represents the number of total discoveries (error bars
indicate the standard deviation estimated with a binomial distribution). The red
dashed line represents the number of false discoveries. The black solid line represents
the number of true discoveries, i.e. the difference between total discoveries and false
discoveries. The blue dashed line represents the number of false null-hypotheses
introduced in the synthetic dataset.
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