Science Advances

www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/DC1

Supplementary Materials for

Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction"

Liqun Jin, Daniel R. Tolentino, Mohand Melaimi, Guy Bertrand

Published 12 June 2015, *Sci. Adv.* **1**, e1500304 (2015) DOI: 10.1126/sciadv.1500304

This PDF file includes:

Supplementary text

- Fig. S1. ¹H NMR of (CAAC)CuOAc in CD₂Cl₂.
- Fig. S2. ¹³C NMR of (CAAC)CuOAc in CD₂Cl₂.
- Fig. S3. ¹H NMR of (CAAC)CuCl in CD₂Cl₂.
- Fig. S4. ¹³C NMR of (CAAC)CuCl in CD₂Cl₂.
- Fig. S5. ¹H NMR of (CAAC)CuOTf in CDCl₃.
- Fig. S6. ¹³C NMR of (CAAC)CuOTf in CDCl₃.
- Fig. S7. ¹H NMR of 1_{Cua} in CD₂Cl₂.
- Fig. S8. 13 C NMR of 1cua in CD₂Cl₂.
- Fig. S9. ¹H NMR of **1**cu2**a** in CD₂Cl₂.
- Fig. S10. ¹³C NMR of 1_{Cu2a} in CD₂Cl₂.
- Fig. S11. ¹H NMR of 2_{Cu2a} in CD₂Cl₂.
- Fig. S12. ${}^{3}C$ NMR of $2c_{u2}a$ in $CD_{2}Cl_{2}$.
- Fig. S13. ¹H NMR of $1c_{u2}b$ in CD_2Cl_2 .
- Fig. S14. ³C NMR of 1cu2b in CD₂Cl₂.
- Fig. S15. ¹H NMR of **2**_{Cu}**a** in CD₂Cl₂.
- Fig. S16. ¹³C NMR of $2_{Cu}a$ in CD₂Cl₂.
- Fig. S17. Evolution of the annulation reaction monitored by ¹H NMR.
- Fig. S18. Evolution of the protodemetallation reaction monitored by ¹H NMR.
- Fig. S19. Evolution of the catalytic reaction between benzyl azide and phenyl

acetylene monitored by ¹H NMR.

- Table S1. Crystal data and structure refinement for 1_{Cu2a} .
- Table S2. Crystal data and structure refinement for 2_{Cu2a} (X = BF4).
- Table S3. Crystal data and structure refinement for 1_{Cu2b} (X = BF4).

1. Experimental details

General: ¹H, ¹³C NMR spectra were recorded on Bruker Avance 300, Jeol ECA 500 and Varian Inova 500 spectrometers. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, *sept* = septet, m = multiplet, br = broad signal. Chemical shifts are given in ppm and are referenced to SiMe₄ (¹H, ¹³C) and CFCl₃ (¹⁹F). All spectra were obtained at 25 °C in the solvent indicated. Coupling constants *J* are given in Hz. Mass spectra were performed at the UC San Diego Mass Spectrometry Laboratory. Melting points were measured with an electrothermal MEL-TEMP apparatus. Single crystal X-ray diffraction data were collected on a Bruker Apex II-CCD detector using Mo-K α radiation ($\lambda = 0.71073$ Å). Crystals were selected under oil, mounted on nylon loops, and then immediately placed in a cold stream of nitrogen. Structures were solved and refined using Olex2 and SHELXTL. The CAAC and 3,3-diphenyl-1-propyne were prepared following literature procedures while all other starting materials were purchased from commercial sources.

2. Synthesis of CAAC-copper complexes

(CAAC)CuOAc:

THF (20 mL) was added to a mixture of CuOAc (1.0 g, 8.2 mmol) and CAAC (2.6 g, 8.2 mmol). The reaction mixture was stirred overnight at room temperature. The solvent was removed under vacuum. The residue was washed with hexane (10 mL), and then was extracted with benzene (20 mL). After removal of benzene under vacuum, (CAAC)CuOAc was isolated as a white solid. Yield 73% (2.6 g). m.p. 151 °C (dec.) ¹H NMR (CD₂Cl₂, 500 MHz): $\delta = 7.44$ (t, J = 7.8 Hz, 1 H, p-H), 7.29 (d, J = 7.8 Hz, 2 H, m-H), 2.85 (sept, J = 6.9 Hz, 2 H, $CHMe_2$), 1.99 (s, 2 H, CH_2), 1.96-1.85 (m, 2 H, CH_2), 1.85-1.66 (m, 5 H, CH_2 , COCH₃), 1.34 (s, 6 H, CH_3), 1.30 (d, J = 6.9 Hz, 6 H, $CHCH_3$), 1.25 (d, J = 6.9 Hz, 6 H, $CHCH_3$), 1.08 (t, J = 7.5 Hz, 6 H, CH_3); ¹³C NMR (CD₂Cl₂, 125 MHz): $\delta = 252.5$ ($C_{carbene}$), 177.6 (COCH₃), 145.5 (C_q), 135.4 (C_q) 129.8 (CH_{Ar}), 125.0 (CH_{Ar}), 81.2 (C_q), 62.9 (C_q), 42.8 (CH_2), 31.3 (CH_2), 29.5, 29.4, 27.0, 22.4, 9.7.

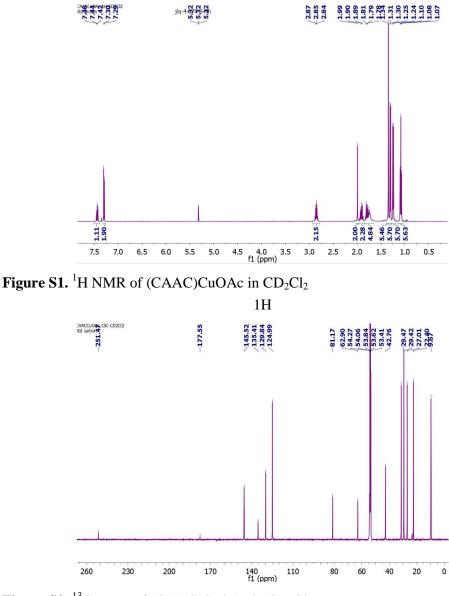


Figure S2. ¹³C NMR of (CAAC)CuOAc in CD₂Cl₂

(CAAC)CuCl:

THF (20 mL) was added to a mixture of CuCl (1.0 g, 10.0 mmol) and CAAC (2.6 g, 8.2 mmol). The mixture was stirred overnight at room temperature. The solvent was removed under vacuum. The remaining solid was washed with hexane (10 mL), and then was extracted with benzene (20 mL). After removal of benzene under vacuum, (CAAC)CuCl was isolated as a white solid. Yield 81% (2.7 g) m.p. 207 °C (dec.). ¹H NMR (CD₂Cl₂, 500 MHz): δ = 7.39 (t, *J* = 7.8 Hz, 1 H, *p*-H), 7.25 (d, *J* = 7.8 Hz, 2 H, *m*-H), 2.83 (sept, *J* = 6.9 Hz, 2 H, *CH*Me₂), 1.98 (s, 2 H, *CH*₂), 1.96-1.84 (m, 2 H, *CH*₂), 1.83-1.71 (m, 5 H, *CH*₂), 1.35 (s, 6 H, *CH*₃), 1.30 (d, *J* = 6.9 Hz, 6 H, *CHCH*₃), 1.29 (d, *J* = 6.9 Hz, 6 H, *CHCH*₃), 1.07 (t, *J* = 7.5 Hz, 6 H, *CH*₃); ¹³C NMR (CD₂Cl₂, 125 MHz):

δ = 250.4 (*C*_{carbene}), 145.1 (*C*_q), 134.6 (*C*_q), 129.8 (*C*H_{Ar}), 124.8 (*C*H_{Ar}), 81.1 (*C*_q), 62.7 (*C*_q), 42.5 (*C*H₂), 31.2 (*C*H₂), 29.4, 29.3, 27.4, 22.5, 9.7; HRMS (ESI-TOFMS): m/z calculated for C₂₂H₃₅CuNCl[NH₄]⁺ 429.2092, found 429.2091.

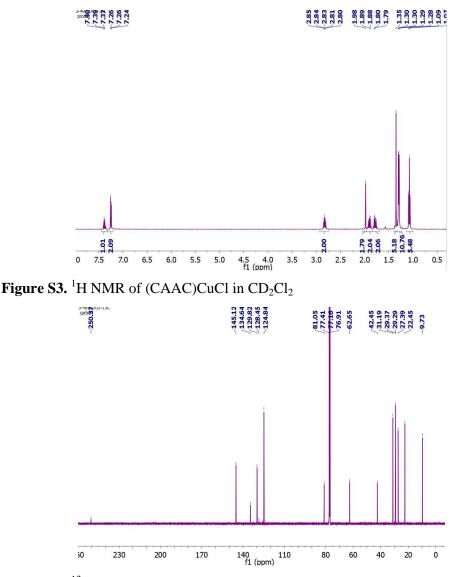


Figure S4. ¹³C NMR of (CAAC)CuCl in CD₂Cl₂

(CAAC)CuOTf:

AgOTf (135 mg, 0.53 mmol) was added to a solution of (CAAC)CuCl (200 mg, 0.48 mmol) in methylene chloride (5 mL) and the solution was stirred in the dark for 30 minutes at room temperature. After filtration, the solvent was removed under vacuum to afford (CAAC)CuOTf as a white solid. Yield 73% (184 mg). m.p. 169 °C (dec.) ¹H NMR (CDCl₃, 500 MHz): δ = 7.44 (t, *J* = 7.8 Hz, 1 H, *p*-H), 7.28 (d, *J* = 7.8 Hz, 2 H, *m*-H), 2.80 (sept, *J* = 6.9 Hz, 2 H, *CH*Me₂), 2.02 (s, 2 H, *CH*₂), 1.96-1.82 (m, 2 H, *CH*₂),

1.81-1.69 (m, 2 H, CH₂), 1.38 (s, 6 H, CH₃), 1.31 (d, J = 6.9 Hz, 6 H, CHCH₃), 1.23 (d, J = 6.9 Hz, 6 H, CHCH₃), 1.08 (t, J = 7.5 Hz, 6 H, CH₃); ¹³C NMR (CDCl₃, 125 MHz): δ = 248.4 ($C_{carbene}$), 144.9 (C_q), 134.5 (C_q), 130.2 (CH_{Ar}), 125.0 (CH_{Ar}), 119.5 (q, J = 318Hz, CF₃), 81.6 (C_q), 62.4 (C_q), 42.6 (CH₂), 31.0 (CH₂), 29.3, 29.2, 27.1, 22.4, 9.5; ¹⁹F NMR (CDCl₃, 282 MHz): δ = -77.7.

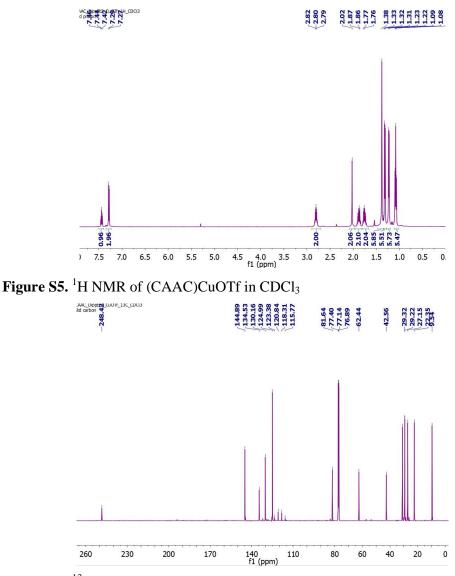


Figure S6. ¹³C NMR of (CAAC)CuOTf in CDCl₃

$(CAAC)CuCCPh \ \mathbf{1}_{Cu}a:$

n-BuLi (2.4 mmol, 2.5 M in hexane) was slowly added to a solution of phenyl acetylene (234 mg, 2.3 mmol) in THF (15 mL) at -78 $^{\circ}$ C. After 30 minutes a solution of (CAAC)CuOAc (1.0 g, 2.3 mmol) in THF (10 mL) was added and the mixture was stirred at ambient temperature for one hour. Volatiles were removed under vacuum and the remaining solid was extracted with benzene (3 x 10 mL). After removal of benzene

under vacuum, the solid was washed with hexane (20 mL). $1_{Cu}a$ was obtained as a light yellow solid. Yield 88% (970 mg). m.p. 152 °C (dec.) ¹H NMR (CD₂Cl₂, 500 MHz): δ = 7.48 (t, *J* = 7.8 Hz, 1 H, *p*-*H*), 7.34 (d, *J* = 7.8 Hz, 2 H, *m*-*H*), 7.23 (br d, *J* = 7.1 Hz, 2 H, *o*-*H*_{C6H5}), 7.14 (br t, *J* = 7.1 Hz, 2 H, *m*-*H*_{C6H5}), 7.08 (br t, *J* = 7.1 Hz, 1 H, *p*-*H*_{C6H5}), 2.88 (sept, *J* = 6.9 Hz, 2 H, *CH*Me₂), 1.98 (s, 2 H, *CH*₂), 1.96-1.87 (m, 2 H, *CH*₂), 1.86-1.74 (m, 2 H, *CH*₂), 1.39-1.30 (m, 18 H, *CH*₃, *CHCH*₃), 1.11 (t, *J* = 7.5 Hz, 6 H, *CH*₃); ¹³C NMR (CD₂Cl₂, 125 MHz): δ = 253.5 (*C*_{carbene}), 145.6 (*C*_q), 135.1 (*C*_q), 131.8 (*C*H_{C6H5}), 121.9 (*C*_{q-C6H5}), 106.3 (PhCCCu), 81.3 (*C*_q), 63.3 (*C*_q), 42.8 (*C*H₂), 31.4 (*C*H₂), 29.5, 29.4, 27.3, 22.4, 9.9; HRMS (ESI-TOFMS): m/z calculated for C₃₀H₄₀CuNNa⁺ 500.2349, found 500.2355.

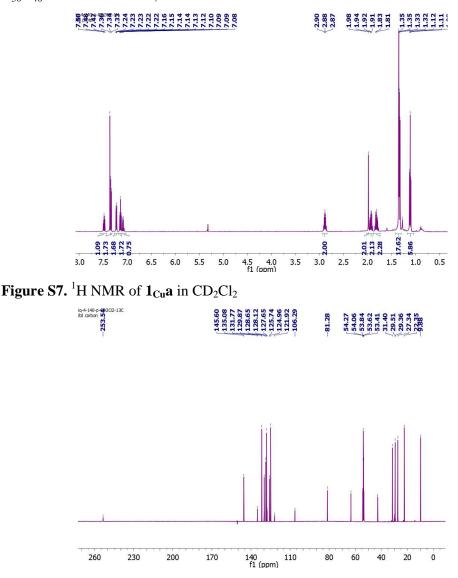
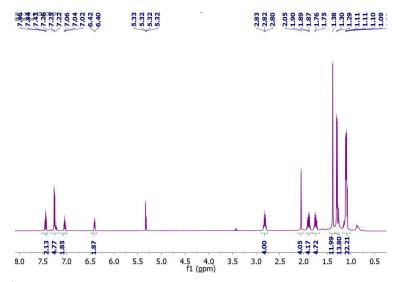


Figure S8. ¹³C NMR of 1_{Cu}a in CD₂Cl₂


Bis(copper) acetylide complexes $1_{Cu2}a$:

1_{Cu2}a (X=OTf):

(CAAC)CuOTf (530 mg, 1 mmol) was added to a solution of $1_{Cu}a$ (480 mg, 1 mmol) in methylene chloride (20 mL). The reaction was stirred for 5 minutes at ambient temperature. After removing the solvent under vacuum, $1_{Cu2}a$ was obtained as a white solid. Yield 95% (952 mg). m.p. 174 °C (dec.). ¹H NMR (CD₂Cl₂, 500 MHz): $\delta = 7.44$ (t, J = 7.8 Hz, 2 H, *p*-H), 7.26 (d, J = 7.8 Hz, 4 H, *m*-H), 7.22 (t, J = 7.6 Hz, 1 H, *p*-H), 7.04 (t, J = 7.6 Hz, 2 H, *m*-H), 6.41 (d, J = 7.6 Hz, 2 H, *o*-H), 2.82 (sept, J = 6.9 Hz, 4 H, CHMe₂), 2.05 (s, 4 H, CH₂), 1.96-1.83 (m, 4 H, CH₂), 1.80-1.68 (m, 4 H, CH₂), 1.38 (s, 12H, CH₃), 1.29 (d, J = 6.9 Hz, 12 H, CHCH₃), 1.18-1.02 (m, 24 H); ¹³C NMR (CD₂Cl₂, 125 MHz): $\delta = 249.4$ ($C_{carbene}$), 145.3 (C_{q-Aro}), 134.7 (C_{q-Aro}), 132.0 (CH_{Aro}), 130.4 (CH_{-Aro}), 129.4 (CH_{-Aro}), 128.7 (CH_{-Aro}), 125.4 (CH_{-Aro}), 122.2 (PhCCCu₂), 118.9 (C_{q-Aro}), 110.8 (PhCCCu₂), 82.5 (C_q), 63.1 (C_q), 42.1 (CH_2), 31.5 (CH_2), 29.4, 27.2, 22.4, 9.9; HRMS (ESI-TOFMS): m/z calculated for C₅₂H₇₅Cu₂N₂⁺ 853.4517, found 853.4507.

$1_{Cu2}a (X=BF_4)_{:}$

Methylene chloride (4 mL) was added to a mixture of $\mathbf{1}_{Cu}\mathbf{a}$ (180 mg, 0.38 mmol) and $Ph_3C^+BF_4^-$ (62 mg, 0.19 mmol). The mixture was stirred for 5 minutes at room temperature. The solvent was removed under vacuum and the remaining solid was washed with pentane (15 mL), affording $\mathbf{1}_{Cu2}\mathbf{a}$ (X=BF₄) as a light yellow solid. Yield 93% (166 mg). Single crystals of $\mathbf{1}_{Cu2}\mathbf{a}$ (X=BF₄) were obtained by diffusion of diethyl ether into a saturated methylene chloride solution.

Figure S9. ¹H NMR of $1_{Cu2}a$ in CD_2Cl_2

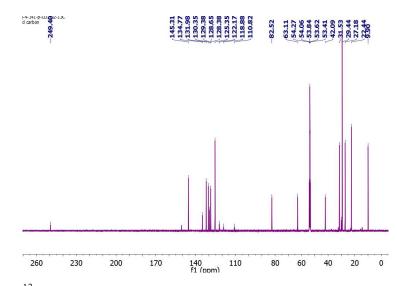


Figure S10. ¹³C NMR of 1_{Cu2}a in CD₂Cl₂

Bis(copper) triazole complexes $2_{Cu2}a$ and $2_{Cu2}a$ (X=BF₄):

Benzyl azide (40.0 mg, 0.30 mmol) was added to a solution of $1_{Cu2}a$ (250 mg, 0.25 mmol) in methylene chloride (0.5 mL). After 1 hour, diethyl ether (15 mL) was added to induce the precipitation of the product. After filtration 2_{Cu2a} was isolated as a pale yellow solid. Yield 87% (246 mg). m.p. 175 °C (dec.). The same procedure was used for the synthesis of 2_{Cu2a} (X=BF₄), starting from 1_{Cu2a} (X=BF₄) (236 mg, 0.25 mmol), and was isolated as a pale yellow solid. Yield 83% (223 mg). m.p. 182 °C (dec.). ¹H NMR (CD₂Cl₂, 500 MHz): δ = 7.48-7.38 (m, 2 H, *p*-H), 7.34-7.14 (m, 12 H), 6.82 (br, 2 H), 5.11 (s, 2 H, CH₂Ph), 2.77 (sept, J = 6.9 Hz, 4 H, CHMe₂), 2.01 (s, 2 H, CH₂), 1.96 (s, 2 H, CH₂), 1.85-1.73 (m, 2 H, CH₂), 1.73-1.61 (m, 4 H, CH₂), 1.61-1.51 (m, 2 H, CH_2), 1.34 (br, 12 H, CH_3), 1.29-1.20 (m, 12 H, $CHCH_3$), 1.04-0.86 (m, 24 H); ¹³C NMR (CD₂Cl₂, 125 MHz): $\delta = 252.7$ (*C*_{carbene}), 249.3 (*C*_{carbene}), 156.7 (*C*_{triazolide}), 155.1 (C_{triazolide}), 145.4 (C_q), 145.3 (C_q), 136.7 (C_{qAr}), 135.2 (C_q), 134.8 (C_q), 133.3 (C_{qAr}), 130.3 (CH_{Ar}), 130.2 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.2 (CH_{Ar}), 128.1 (C_{q-Ar}), 128.0 (CH_{Ar}), 127.1 (CH_{Ar}), 125.2 (CH_{Ar}), 125.1 (CH_{Ar}), 82.3 (C_a), 81.9 (C_a), 63.3 (C_a), 63.0 (C_q), 57.1 (CH₂Ph), 42.4 (CH₂), 31.3 (CH₂), 29.4, 27.0, 22.3, 9.7. HRMS (ESI-TOFMS): m/z calculated for $C_{59}H_{82}Cu_2N_5^+$ 986.5157, found 986.5161. Single crystals of 2_{Cu2a} (X=BF₄) were obtained by diffusion of hexane into a saturated methylene chloride solution.

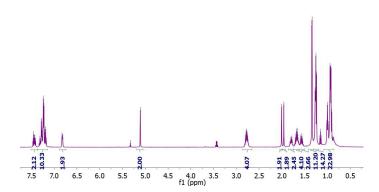
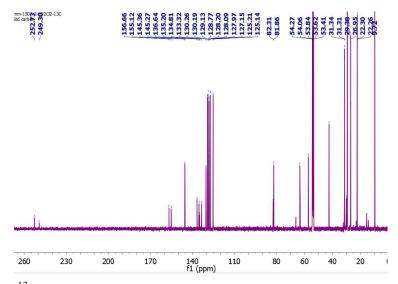



Figure S11. ¹H NMR of 2_{Cu2}a in CD₂Cl₂

Figure S12. ¹³C NMR of $2_{Cu2}a$ in CD_2Cl_2

Bis(copper) acetylide complex $1_{Cu2}a$ by proto-demetallation of $2_{Cu2}a$:

Phenylacetylene (15 mg, 0.15 mmol) was added to the solution of $2_{Cu2}a$ (136 mg, 0.12 mmol) in methylene chloride (5 mL). After stirring 16 hours at room temperature, the solvent was removed under vacuum. The remaining solid was washed with diethyl ether (3 x 10 mL) to remove triazole **3** and after drying $1_{Cu2}a$ was obtained as a yellow solid Yield 91% (108 mg). NMR data are identical to those of a sample prepared as described above.

Bis(copper) acetylide complex $1_{Cu2}b$ by proto-demetallation of $2_{Cu2}a$ (X=BF₄): 3,3-Diphenyl-1-propyne (26 mg, 0.14 mmol) was added to the solution of $2_{Cu2}a$ (X=BF₄) (120 mg, 0.11 mmol) in methylene chloride (5 mL). After stirring 16 hours at room temperature, the solvent was removed under vacuum. The remaining solid was washed with diethyl ether (3 x 10 mL) to remove triazole **3** and after drying **1**_{Cu2}**b** (X=BF₄) was obtained as a yellow solid. Yield 87% (100 mg). m.p. 185 °C (dec.). ¹H NMR (CD₂Cl₂, 500 MHz): $\delta = 7.56$ (t, J = 7.8 Hz, 2 H, p-H), 7.32 (d, J = 7.8 Hz, 4 H, m-H), 7.22 (t, J = 7.6 Hz, 1 H, p-H), 7.24-7.06 (m, 6 H, H_{Ar}), 6.84 (d, J = 6.2 Hz, 4 H, H_{Ar}), 3.43 (br, 1 H, CHCC), 2.80 (sept, J = 6.9 Hz, 4 H, CHMe₂), 2.04 (s, 4 H, CH₂), 1.89-1.77 (m, 4 H, CH₂), 1.75-1.62 (m, 4 H, CH₂), 1.40 (s, 12H, CH₃), 1.29 (d, J = 6.9 Hz, 12 H, CHCH₃), 1.12-0.98 (m, 24 H); ¹³C NMR (CD₂Cl₂, 125 MHz): $\delta = 249.9$ ($C_{carbene}$), 145.6 (C_q), 141.1 (CCCu₂), 135.0 (C_q), 130.4 (CH_{Ar}), 128.8 (CH_{C6H5}), 127.3 (CH_{C6H5}), 125.5 (CH_{Ar}), 120.1 (C_{q-C6H5}), 109.0 (CCCu₂), 82.3 (C_q), 62.8 (C_q), 46.5 (CHCC), 42.5 (CH₂), 31.4 (CH₂), 29.5, 29.4, 27.1, 22.6, 9.9; HRMS (ESI-TOFMS): m/z calculated for C₅₉H₈₁Cu₂N₂⁺ 943.4986, found 943.5004. Single crystals of **1**_{Cu2}**b** (X=BF₄) were obtained by diffusion of diethyl ether into a saturated methylene chloride solution.

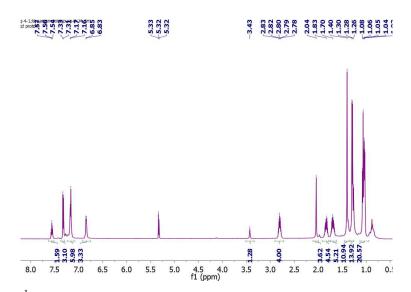
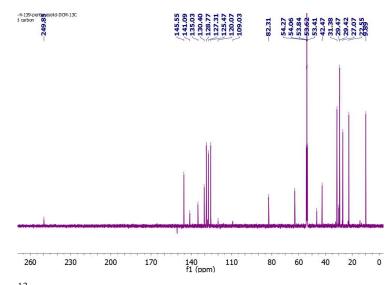



Figure S13. ¹H NMR of 1_{Cu2}b in CD₂Cl₂

Figure S14. ¹³C NMR of **1**_{Cu2}**b** in CD₂Cl₂

Mono(copper) triazole complex $2_{Cu}a$:

Benzyl azide (68.2 mg, 0.51 mmol) was added to a solution of $1_{Cu}a$ (200 mg, 0.42 mmol) in methylene chloride (0.5 mL). After 15 hours, diethyl ether (15 mL) was added to induce the precipitation of the product. After filtration, the residue was washed with pentane (10 mL) to afford $2_{Cu}a$ as a pale yellow solid. Yield 61% (156 mg). m.p. 155 °C (dec.) ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 7.78$ (br d, J = 7.5 Hz, 2 H), 7.48 (t, J = 7.8 Hz, 1 H, *p*-H), 7.35-7.07 (m, 8 H), 6.84 (br, d, J = 7.5 Hz, 2 H), 5.21 (s, 2 H, CH₂Ph), 2.87 (sept, J = 6.9 Hz, 2 H, CHMe₂), 1.99 (s, 2 H, CH₂), 1.89-1.63 (m, 4 H, CH₂), 1.37 (s, 6 H, CH₃), 1.27 (d, J = 6.9 Hz, 6 H, CHCH₃), 1.07 (d, J = 6.9 Hz, 6 H, CH₂CH₃); ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): $\delta = 254.0$ ($C_{carbene}$), 156.1 ($C_{triazolide}$), 152.8 ($C_{triazolide}$), 145.7 (C_q), 139.2, 136.7 (C_{qAr}), 135.4 (C_q), 130.2 (CH_{Ar}), 128.5 (CH_{Ar}), 128.4 (CH_{Ar}), 127.2 (CH_{Ar}), 126.8, 126.3, 125.8, 125.3 (CH_{Ar}), 81.6 (C_q), 63.5 (C_q), 55.9 (CH_2 Ph), 42.4 (CH_2), 31.6 (CH_2), 29.5, 27.0, 22.5, 9.8; HRMS (ESI-TOFMS): m/z calculated for $C_{37}H_{48}CuN_4^+$ 611.3169, found 611.3166.

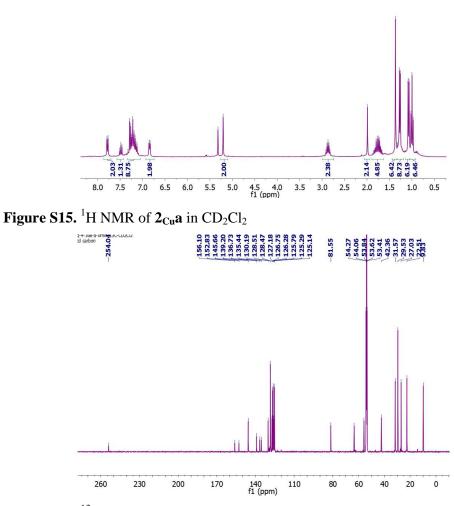


Figure S16. ¹³C NMR of 2_{Cu}a in CD₂Cl₂

Mono(copper) acetylide complex $\mathbf{1}_{Cu}\mathbf{a}$ by proto-demetallation of $\mathbf{2}_{Cu}\mathbf{a}$: Phenylacetylene (27 µL, 0.25 mmol) was added to the solution of $\mathbf{2}_{Cu}\mathbf{a}$ (15.3 mg, 0.025 mmol) in methylene chloride (0.4 mL). After stirring for 4.5 hours at room temperature, the solvent was removed under vacuum. The remaining solid was washed with pentane (10 mL) to remove triazole **3** and after drying $\mathbf{1}_{Cu}\mathbf{a}$ was obtained as a yellow solid in 73% yield. NMR data are identical to those of a sample prepared as described above.

3. Kinetic Experiments

Annulation reaction of benzyl azide and complexes $1_{Cu2}a$ and $1_{Cu2}a$

In a NMR tube, benzyl azide (0.3 mmol) was added to a solution of $\mathbf{1}_{Cu2}\mathbf{a}$ (0.015 mmol) in CD₂Cl₂ (0.5 mL) and 1,2-dibromoethane (0.06 mmol) as internal standard. The reaction was monitored by ¹H NMR (Blue). The same procedure was used for the reaction involving $\mathbf{1}_{Cu}\mathbf{a}$ (0.015 mmol, red).

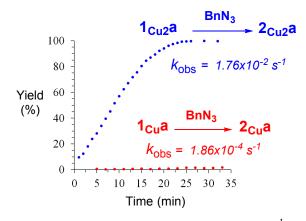


Figure S17. Evolution of the annulation reaction monitored by ¹H NMR

Proto-demetallation of complexes $2_{Cu2}a$ and $2_{Cu}a$:

In a NMR tube, phenylacetylene (0.3 mmol) was added to a solution of $2_{Cu2}a$ (0.015 mmol) in CD₂Cl₂ (0.5 mL) with 1,2-dibromoethane (0.06 mmol) as internal standard. The reaction was monitored by ¹H NMR (Blue). The same procedure was used for the reaction involving $2_{Cu}a$ (0.015 mmol, red).

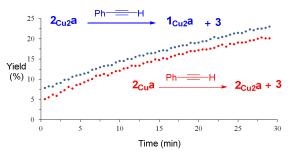
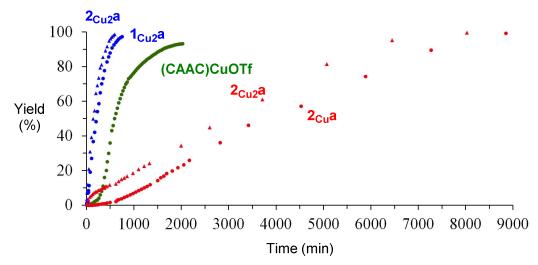



Figure S18. Evolution of the protodemetallation reaction monitored by ¹H NMR

Figure S19. Evolution of the catalytic reaction between benzyl azide and phenyl acetylene monitored by ¹H NMR

In NMR tube, a CD₂Cl₂ solution (0.5 mL) of phenylacetylene (0.3 mmol), benzylazide (0.3 mmol), and 1,2-dibromoethane (0.06 mmol) as internal standard was added to the copper catalyst ($2_{Cu2}a$, $1_{Cu2}a$, (CAAC)CuOTf, $2_{Cu}a$ and $1_{Cu}a$) (0.015 mmol). The reaction was monitored by ¹H NMR.

4. X-Ray Diffraction Details

Bis(copper) acetylide complex $1_{Cu2}a$:

Table S1. Crystal data and struct	ture refinement for $1_{\mathbf{Cu}}$	12a.	
Identification code	1 _{Cu2} a (CCDC # 1042483)		
Empirical formula	C53 H75 Cu2 F3 N2 O3 S		
Molecular formula	C52 H75 Cu2 N2, C F3 O3 S		
Formula weight	1004.29		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 9.3364(9) Å	α= 90°.	
	b = 31.672(3) Å	$\beta = 97.3090(10)^{\circ}.$	
	c = 17.7655(17) Å	$\gamma = 90^{\circ}$.	
Volume	5210.6(9) Å ³		
Z	4		
Density (calculated)	1.280 Mg/m ³		
Absorption coefficient	0.909 mm ⁻¹		
F(000)	2128		
Crystal size	0.215 x 0.122 x 0.104 mm ³		
Crystal color, habit	Yellow Block		
Theta range for data collection	1.286 to 26.433°.		
Index ranges	-11<=h<=11, -39<=k<=39, -22<=l<=22		
Reflections collected	78788		
Independent reflections	10713 [R(int) = 0.0464]		
Completeness to theta = 25.000°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.0932 and 0.0656		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	10713 / 2 / 607		
Goodness-of-fit on F ²	1.017		
Final R indices [I>2sigma(I)]	R1 = 0.0325, wR2 =	0.0741	
R indices (all data)	R1 = 0.0444, wR2 =	0.0803	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.424 and -0.272 e.Å	-3	

Bis(copper) triazole complex $2_{Cu2}a$ (X = BF4):

Identification code	$2_{Cu2}a (X = BF4) (CCDC \# 1042484)$	
Empirical formula	C59 H82 B Cu2 F4 N5	5 -0
Molecular formula	C59 H82 Cu2 N5, B F4	
Formula weight	1075.18	N
Temperature	100.0 K	Cu
Wavelength	0.71073 Å	
Crystal system	Triclinic	•
Space group	P-1	
Unit cell dimensions	a = 9.365(2) Å	$\alpha = 98.164(5)^{\circ}$.
	b = 15.912(3) Å	$\beta = 97.065(5)^{\circ}.$
	c = 19.408(4) Å	$\gamma = 96.941(5)^{\circ}$.
Volume	2812.9(10) Å ³	
Z	2	
Density (calculated)	1.269 Mg/m ³	
Absorption coefficient	0.811 mm ⁻¹	
F(000)	1140	
Crystal size	0.113 x 0.035 x 0.021 mm ³	
Crystal color, habit	Yellow Needle	
Theta range for data collection	1.071 to 25.642°.	
Index ranges	-11<=h<=11, -19<=k<=19, -23<=l<=23	
Reflections collected	44855	
Independent reflections	10442 [R(int) = 0.0619]	
Completeness to theta = 25.000°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.0613 and 0.0340	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	10442 / 0 / 656	
Goodness-of-fit on F ²	1.132	
Final R indices [I>2sigma(I)]	ma(I)] $R1 = 0.0780, wR2 = 0.1933$	
R indices (all data)	es (all data) $R1 = 0.1110, wR2 = 0.2132$	
Extinction coefficient		
Largest diff. peak and hole	argest diff. peak and hole 1.446 and -1.191 e.Å ⁻³	

Table S2. Crystal data and structure refinement for $2_{Cu2}a$ (X = BF4).

Bis(copper) triazole complex $1_{Cu2}b$ (X = BF4):

Table 55. Crystal data and struct	are remnented in Γ_{U2D} ($\Lambda = DI +$).	
Identification code	$1_{Cu2}\mathbf{b} \; (X = BF4) \; (CCDC \; \# \; 1042482)$	
Empirical formula	C60.50 H84 B Cl3 Cu2 F4 N2	
Molecular formula	C59 H81 Cu2 N2, B F4, 1.5(C H2 Cl2),	
Formula weight	1159.53	
Temperature	100.0 K	N N N N N N N N N N N N N N N N N N N
Wavelength	0.71073 Å	Cu Cu
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.9729(9) Å	$\alpha = 85.829(2)^{\circ}.$
	b = 18.9530(15) Å	$\beta = 77.985(2)^{\circ}.$
	c = 27.613(2) Å	$\gamma = 77.201(2)^{\circ}.$
Volume	5974.0(8) Å ³	
Z	4	
Density (calculated)	1.289 Mg/m ³	
Absorption coefficient	0.897 mm ⁻¹	
F(000)	2444	
Crystal size	0.255 x 0.247 x 0.153 mm ³	
Crystal color, habit	Yellow Block	
Theta range for data collection	1.102 to 24.999°.	
Index ranges	-13<=h<=14, -22<=k<=22, -32<=l<=29	
Reflections collected	81431	
Independent reflections	20999 [R(int) = 0.0419]	
Completeness to theta = 24.999°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.0932 and 0.0665	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	20999 / 346 / 1517	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0861, wR2 = 0.2427	
R indices (all data)	R1 = 0.1113, wR2 = 0.2642	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.082 and -1.193 e.Å ⁻³	

Table S3. Crystal data and structure refinement for $\mathbf{1}_{Cu2}b$ (X = BF4).