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Detailed Magnetic Noise Measurements:
As indicated in the main text, we see substantial evidence that magnetic gradient noise arises
from a non-nuclear source. The first evidence is the paramagnetic gradient discussed in the pre-
vious section with evidence shown in Fig. 6 of the main text. This gradient would be extremely
difficult to explain with thermally or dynamically polarized 29Si or 73Ge nuclear spins.

Perhaps more telling is the temporal fluctuation in the gradient-induced splitting ∆(t). This
can be deduced by Fourier-transforming and curve-fitting a single-shot of the singlet-triplet
oscillations to extract ∆, and observing its direct time-domain fluctuation. An example trace
appears in Fig. S1A. The fluctuation has a shorter correlation time than expected for diffusing
nuclear magnetization in 800 ppm 29Si. A typical noise spectrum for the measured gradient
is shown in Fig. S1B, which appears to follow a 1/f 1.5 trend at high magnetic fields. As a
function of magnetic field, a 1/fα spectrum is always observed with α varying from 1 to about
1.5 as the field is increased, as shown in Fig. S1C.

We note that for noise with a 1/fα characteristic, T ∗2 depends on the averaging time. If de-
phasing is truly due to a finite nuclear ensemble, then one may define T ∗2 as the dephasing time
after infinite ensemble averaging (or, more practically, sufficient averaging to sample the entire
available nuclear hyperfine distribution). However, this averaging time may be prohibitively
long, especially for diffuse nuclear ensembles. Moreover, infinite ensemble averaging over a
true 1/fα noise distribution would lead to vanishing T ∗2 . If measuring substantially faster than
the time it takes to sample the underlying gradient distribution, measurements of T ∗2 will be
longer. In Fig. S1D, we show the T ∗2m times we extract by averaging only a subset of the total
number of ensemble measurements, as a function of the actual laboratory time for that subset.
We see that for our 1/fα noise source, especially for higher values of α, faster measurements
lead to longer effective T ∗2m times. One must therefore be cautious when comparing T ∗2m num-
bers measured with finite averaging times. The expected infinite-averaging-time T ∗2m due to
800 ppm 29Si (corresponding to about 200 nuclear spins in the 5000 nm3 effective dot volume)
is not grossly different than the 2.5 µs time we observe at low field, but given the slow nuclear
diffusion time and finite averaging time, a much longer T ∗2m result would likely be observed.

Finally, the 1/fα character of magnetic noise is confirmed by measuring spin-echo, in which
singlet-triplet oscillations evolve for a dephasing time td, a π-pulse is performed via double-dot
exchange, and then singlet-triplet oscillations evolve again for a rephasing time tr (1). As a
function of the total and difference times, t+ = td + tr and t− = td − tr, one expects a
singlet probability of the form PS(t+, t−) = {1 − cos(〈∆〉t−/~) exp[−R∆(t+, t−)]}/2, where
Rx(t+, t−) is a standard relaxation function for a Hahn-echo-like sequence due to classically
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Figure S1: Magnetic Gradient Noise. A: Mean spin flip-flop splitting energy 〈∆〉 de-
duced from singlet-triplet oscillations as a function of laboratory time, as found via curve-
fitting over averages of 25 single-shot traces. This data is for an applied magnetic field of
0.4 T. The light blue band is the single-σ confidence interval for the fit. B: Power spectral
density of 〈∆〉. The time trace in A is divided into 100 intervals whose power spectra are
averaged to give the red dots with standard deviation in light blue. This spectrum is then fit
to a power-law; the best fit is the solid black line and the dashed lines represent the single-σ
confidence interval. C: The results of the power-law fits in B. Fit values and standard errors
of α (blue points, left axis) and Am (green points, right axis) for S∆(f) = A2

mf
α−1
0 /fα as

a function of magnetic field. The reference frequency f0 = 1 Hz is used to keep Am in
units of neV. D: T ∗2m measured via curvefitting as a subset of total averaging time T for
three different applied magnetic fields B. The dashed lines are the leading order power-law
expectation, T ∗2m ∼ (~/Am)

√
2(α− 1)/(f0T )α−1, with Am and α given by the values in C.
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Figure S2: Magnetic Gradient Spin Echo. Magnetic gradient T2m measured via
Hahn spin echo (1) as a function of magnetic field. The red dots show the 1/e
decay point of the measured spin-echo decay, and the blue dots show the integral
of A2

mf
α−1
0 /fα, with A and α and their uncertainties given in Fig. S1, to the Hahn

echo filter function (Eq. (1), with td = tr).

fluctuating parameter x, given by

Rx(t+, t−)

=
1

~2

∫
dω

2π
Sx(ω)

{∫ td

0

dt1

∫ t1

0

dt2 cos[ω(t1 − t2)] +

∫ td+tr

td

dt1

∫ t1

td

dt2 cos[ω(t1 − t2)]

−
∫ td+tr

td

dt1

∫ td

0

dt2 cos[ω(t1 − t2)]

}
=

1

~2

∫
dω

πω2
Sx(ω){sin2(ωtd/2) + sin2(ωtr/2)− 2 sin(ωtd/2) sin(ωtr/2) cos(ωt+/2)}.

(1)

The term in the brackets is the filter function for the Hahn echo; in particular, when td = tr
we obtain F (ωt+) = 2 sin2(ωt+/4)(1− cos(ωt+/2)) = 4 sin4(ωt+/4) ∼ ω4. When integrated
against a spectral noise density of the form S∆(f) = A2fα−1

0 /fα, one obtains

R∆(t+, 0) =
A2

~2
(πf0)α−1t1+α(1− 2α−1)Γ(−1− α) sin

(
πα

2

)
. (2)

Figure S2 shows the measured spin-echo decay time as a function of magnetic field in red, which
may be compared to the blue dots showing the expected spin-echo decay time (i.e. the value of
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t+ where R∆(t+, 0) = 1) corresponding to Eq. (2) and the direct time-domain measurements of
A and α shown in Fig. S1.

Evident from Figures S1C and S2 is a clear change in the noise character of the fluctuating
gradient ∆(t) in the vicinity of an applied magnetic field of 0.04 T. This field corresponds
to where the Zeeman energy of an electron spin equals the thermal energy close to the base
temperature of the dilution refrigerator. This is highly suggestive of an electronic source for
this gradient noise, although the material origin remains unknown.

Triple-Dot Data Analysis:
In this section, we discuss the models to which we fit our triple-dot data. For both the triple-dot
Rabi/Ramsey experiment (Fig. 4) and the Y-echo experiment (Fig. 5), we make a couple of
simplifying assumptions. One assumption we make is to treat magnetic gradient fluctuations
as quasi-static, zero-mean Gaussian noise. At the magnetic fields close to zero used for these
experiments, this approximation fits the data well, especially since most of the data is dominated
by exchange noise that renders the effects of dynamic gradient fluctuations difficult to detect.

For our second simplifying assumption, we note that in the Rabi, Ramsey, and Y-echo se-
quences, we combine short π-pulses with free evolution. In the Rabi and Ramsey cases, there
is an initial and final π-pulse about the n-axis; in the Y-echo case, there is a single composite π
pulse about the y-axis in the middle of the sequence. For purposes of fitting data with a simple
model, we will treat these π pulses as instantaneous, and treat pulse errors only as a reduction of
total fringe visibility. In reality these pulses certainly have finite duration and errors correlated
to the surrounding evolution, but these have little impact on the shape of the observed oscilla-
tions and therefore little impact on extracting physical parameters using the resulting models.

To derive simple analytic models, we use two important types of basis change, both dis-
cussed further in Ref. 27. They are expressed as rotations in SU(3), using the notation Uj(θ) =
exp(−iθλj/2) for the Gell-Mann matrix λj . The first important basis change is performed by
the rotation U2(φ), where φ = 120◦. In the logical qubit space, this is a rotation about the y-axis
by angle φ. This operation is also equivalent, up to simple geometric reflections, to a permuta-
tion of the dot labels. We define that exchange among dots 1 and 2 defines rotations about z,
and that exchange between 2 and 3 defines rotations about n, but we could reassign these dot
assignments and simultaneously perform the U2(φ) basis change, taking care to update associ-
ated initialization and measurement states. Hence the Hamiltonian terms due to exchange are
written

Jz ~S1 · ~S2 = −Jz
2

[
λ3 +

λ8√
3

]
, (3)

Jn~S2 · ~S3 = −Jn
2
U2(φ)

[
λ3 +

λ8√
3

]
U †2(φ), (4)

where ~Sj is the spin-vector for the electron in dot j.
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The second important basis change uses the observation that if only one exchange interac-
tion is active, then the simplest basis in which to calculate is the 2-dimensional subspace of
the double-dot qubit for which exchange acts as a Z-rotation. The transformation between the
“triple-dot” and “double-dot” basis is achieved by the unitary U7(β), where β = π− tan−1

√
8.

In the double-dot basis, say for dots 1 and 2, the magnetic gradient energy between dots
1 and 2, notated ∆12 = gµB(B1 − B2), causes x-axis rotations, while the difference be-
tween the average magnetic energy on dots 1 and 2 and the field of the third dot, notated
∆12 = gµB[B3 − (B1 + B2)/2], only causes a phase difference for the third, non-qubit state.
Hence the Hamiltonian term due to magnetic noise is written

HB(±[B1, B2, B3]) = ±U7(β)

[
∆12

2
λ1 +

∆12√
3
λ8

]
U †7(β). (5)

The ± reflects the fact that the two SU(3) subspaces of the triple-dot system (corresponding to
the total spin projection) rotate in opposite orientations with respect to magnetic field gradients.
However, the two subspaces perform equivalently on average when treating an ensemble of
noisy field gradients with zero mean. The U7(β) transformation block diagonalizes the Hamil-
tonian into an SU(2) and a U(1) block, which are trivial to exponentiate. We notate the SU(2)
exponential as

V (J,±[Bj, Bk, B`], t) = U †7(β) exp

[
−iJt

~
~Sj · ~Sk − iHB(±[Bj, Bk, B`])

t

~

]
U7(β)

= exp

{
i
Jt

2~

[
λ3 +

λ8√
3

]
∓ i t

~

[
∆jk

2
λ1 +

∆k√
3
λ8

]}
. (6)

In what follows, we use basis changes and dot permutations to cast evolution into this easily
calculated exponential.

Triple-dot Rabi/Ramsey: The triple-dot Rabi/Ramsey experiment demonstrates the basic op-
eration of the qubit. However, it shows more complicated relaxation phenomena than analogous
double-dot experiments. We are nonetheless able to fit these phenomena to a relatively simple
model that we now discuss.

The time-dependent evolution in the triple-dot Rabi experiment is described by rotations
about the n-axis at exchange rate Jn as well as evolution due to magnetic field gradients. This is
exactly the case treated in Ref. 27. We simplify by factoring out the basis change which switches
to the double-dot qubit for dots 2 and 3, and permuting the magnetic fields corresponding to
the U2(φ) transformation. Then the time-dependent evolution during n-rotations given (2,3)
exchange Jn is

Un(t) = U2(φ)U †7(β)V (Jn,±[B2, B3, B1], t)U7(β)U †2(φ). (7)

In the Ramsey case, the time-dependent evolution of the sequence is governed by rotation about
the z-axis, so the evolution during the z-rotations given (1,2) exchange Jz is simply

Uz(t) = U7(β)V (Jz, [B1, B2, B3], t)U †7(β). (8)
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The initial and final π-pulses about the n-axis, which are modeled as perfect and notated
N , perform a SWAP23 operation, i.e. a swap between spins 2 and 3. This operation therefore
adds a SWAP23 in the case of Rabi. For Ramsey, we reinterpret this pulse as its equivalent 120◦

rotation about the y-axis accompanied by a SWAP12, giving

NUn(t)N = e−iφU2(φ)U †7(β)V (Jn,±[B3, B2, B1], t)U7(β)U †2(φ), (9)

NUz(t)N = e−iφU †2(φ)U †7(β)V (Jz,±[B2, B1, B3], t)U7(β)U2(φ). (10)

These expressions are very similar, and if we assume that the magnetic field on each dot fluctu-
ates independently with zero mean and with the same variance, the resulting averaged evolution
will be the same in all cases. Hence we provide a single expression, referring generally to
exchange rate J and to σB = (gµB)2〈B2

j 〉. With singlet initialization, the ensemble-averaged
singlet probability after evolution time t is

PS(t) =
1

2
− ~2

8π
√

2

∫ ∫
dy

σJ

db

σB
e−b

2/(4σ2
B)−(y−J)2/(2σ2

J )×[
(yt)2

8
sinc2

(√
b2 + y2

2
t

)
− e−3(σBt)

2/4Re{(1 + eiyt)ei(
√
b2+y2−y)t/2}

]
. (11)

This is the same expression as Eqs. (9-11) of Ref. 27 except that we have added an integration
of J about a quasi-static Gaussian distribution with variance σJ . A notable feature is the pres-
ence of three distinct timescales at high J values, which are visible in the Rabi-Ramsey data.
First, there is a decay of oscillations due to magnetic gradient-noise terms that commute with
exchange. Second, there is a bias-dependent decay of oscillations due to charge noise. Finally,
after charge noise dephases Rabi oscillations to an incoherent singlet population of 1/2, mag-
netic noise eventually mixes the entire SU(3) subspace, leading to a decay of this incoherent
population to 1/3.

Deviations from this model will occur at J values lower than a few MHz, where the as-
sumption of only a single active exchange begins to lose validity. In this region, our model
calculates the expected shape by diagonalizing the 3×3 Hamiltonian with both Jz and Jn terms
present. The diagonalization is numerically averaged about the Gaussian noise distributions for
all exchange values and magnetic terms.

We fit running averages of each row of the Rabi/Ramsey data of Fig. 4 of the main text
to this model, including scale parameters to incorporate state preparation, measurement, and
π-pulse errors. An example such fit is shown in Fig. S3. The resulting fit values of Jn and Jz
are then each fit to a 4-parameter model.

The model we employ for Jn and Jz follows the canonical Hubbard-model result J =√
4t2c − α2

L(ε− k1)2/4 − αL|ε − k1|/2. (We presume each side of the triple-dot (1,1,1) region,
and therefore Jz and Jn, each have a different tc and fitting parameters kj , but we will discuss
both at once here.) In this equation tc is the tunnel-coupling and k1 is the first fitting parameter,
corresponding to the voltage bias which provides double-dot tunnel resonance. The lever-arm

7



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Evolution time (μ s)

Si
ng

le
t P

ro
ba

bi
lit

y

Figure S3: Fit to sample row of triple-dot Rabi data. The raw data
points (which average over 20 singles shots) are shown as grey dots; these
correspond to detuning voltage −14.25 mV of Fig. 4. The blue curve
shows the best fit to a + bPS(t + t0), where PS(t) is given by Eq. (11)
and the fitting parameters for this particular detuning with standard er-
ror are a = 0.11 ± 0.02, b = 0.84 ± 0.02, t0 = 0.19 µsec, J/h =
1.875 MHz ± 5 kHz, σB/h = 63 ± 5 kHz, and σJ/h = 41 ± 5 kHz. The
light blue shaded region is the single-σ confidence interval for the fit corre-
sponding to the given standard errors.

αL we estimate as 0.1 meV/mV, although from a fitting standpoint this parameter may be con-
sidered to be absorbed into tc over the active fitting range. However, we find that this model
with a constant tc is insufficient to explain the dependence of J with detuning voltage ε. Since
the detuning bias is applied to P1 and P3 gates rather than to P1/P2 or P2/P3 pairs, and possibly
because of asymmetries in the device, tc appears to be a function of ε.

Therefore, we use a more elaborate physical model for the tunnel coupling. This model
is motivated by three-dimensional self-consistent device-level simulations. These simulations
indicate that the plunger and exchange gates collectively form a deep potential trough with 3 to
4 meV spatial quantization energy in the quantum well along the gate row. The quantum dot
states are situated inside this trough with a notably weaker quantization of about 2 meV or less,
suggesting that the electron character in the trough is approximately one-dimensional. After
separating fast and slow electron motion perpendicular and along the trough, and averaging over
the fast motion, we end with an effectively one-dimensional potential profile. An application of
the Wentzel-Kramers-Brillouin (WKB) approximation is then appropriate to quantify electron
interdot tunnel coupling tc through smooth and shallow barriers separating individual P1, P2,
and P3 states. In this approximation, tc is primarily determined by the exponentiated integral
S of the electron momentum over the classically forbidden barrier region between two turning
points, with a prefactor, treated here as another constant fitting parameter k2. In the WKB
approximation, the prefactor is defined by the degree of quantization of dot states on both sides
of the barrier. As the height and curvature of the barriers is controlled by the gate biases, it
is appropriate to expand the barrier momentum integral as a series in the detuning voltage ε.
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Keeping only the linear approximation, S = k3 + k4ε, where k3, k4 are again fitting parameters
related to the barrier shape and its dependence on ε.

The resulting four-parameter-per-exchange-side model for J follows the experimentally ob-
served oscillation frequency extremely well. Using this function, shown in the rightmost panel
of Fig. 4 of the main text, we find that the entire data set fits well to a model with a constant
σB/h of 63± 5 kHz and σJ = |dJ/dε|σε with σε = 70± 5 µV.

Y-echo: The Y-echo experiment is useful both for extracting charge noise dynamics and for
showing the ability to achieve useful universal control in the triple-dot. In the following, we
develop a rather complex but still analytic model for the Y-echo in the presence of magnetic
gradients, and we see that the observed data matches this model quite well.

In analyzing the Y-echo experiment, we make an additional simplifying assumption. We
note that the ∆12 terms during free evolution contribute errors of order (∆12/Jn)2, which we
can ignore under the assumption ∆12 � Jn. In the Rabi/Ramsey experiment, these terms are
mostly indiscernible due to charge noise damping. The approximation is of use because the
expression will be more complicated, as we now must consider dynamic noise, treated via the
time-varying fluctuation Hamiltonian

H1(t) = −δ(t)
2

[
U2(φ)λ3U

†
2(φ) +

λ8√
3

]
= −δ(t)

2
U2(φ)U †7(β)

[
λ3 +

λ8√
3

]
U7(β)U †2(φ). (12)

We will abbreviate the basis change accomplished by U2(φ)U †7(β) with a prime; for example,
H ′1(t) = U7(β)U †2(φ)H1(t)U2(φ)U †7(β).

We will employ time-dependent perturbation theory in the interaction picture. Our unper-
turbed evolution is approximated to include only Jn rotations, the magnetic gradient evolution
which commutes with Jn rotations, and the perfect composite Y pulse at time td = (t+ + t−)/2.
Therefore, for times within the dephasing interval,

U ′0(t ≤ td) = exp

[
−iJn

2
λ3 + i

∆12 − Jn/2√
3

λ8

]
(13)

and the fluctuation Hamiltonian in the interaction picture, H̃ ′1(t < td), is equivalent to H ′1(t).
Treated ideally (with no error and instantaneous), the composite Y pulse provides the unitary

Y = λ2 + eiη |Q〉〈Q| , (14)

i.e. it rotates the qubit subspace by π about λ2 and applies a relative phase η to the leaked
state |Q〉. The angle η is 3.9068 for the 4-pulse sequence beginning with rotation sequence
n − z − n − z and angles 2.525, 1.415, 1.415, 2.525. (All angles here are in radians). In the
reference frame in which H1(t) is diagonal, the composite Y -pulse unitary is

Y ′ = U7(β)U †2(φ)Y U2(φ)U †7(β) =
eiη

3
+

1√
3
λ2 −

eiη

3
λ3 +

√
2

3
λ5 −

√
2eiη

3
λ6. (15)
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We then evolve to total time td + tr = t+, so that for t > td,

U ′0(t) = U ′0(t− td)Y ′U ′0(td). (16)

The interaction picture hamiltonian during the rephasing interval is then

H̃ ′1(t > td) ≈ −H̃ ′1(t < td)−
δ(t)

3

[
λ3 +

√
2 cos[ξ(t− td)]λ6 −

√
2 sin[ξ(t− td)]λ7

]
, (17)

where terms of order (∆23/Jn)2 have been omitted and

~ξ = Jn(sec θ − 1)/2 + ∆23 ≈ ∆2
23/(4Jn) + ∆23. (18)

For a perfect echo, we would desire H̃ ′1(t > td) = −H̃ ′1(t < td), but we see an extra term in
Eq. (17). When ∆ = 0, ξ = 0, and in the qubit basis the extra term looks like U2(φ)U †7(β)(λ3 +√

2λ6)U7(β)U †2(φ) =
√

3λ8, corresponding only to a phase on the leakage space. Corrections
in the measured qubit space due to this term are of order ∆23δ

2(t), which we neglect here under
the continued assumption of small gradients. Neglecting this term substantially simplifies our
expression, since our simple Hahn-echo structure gives

− 1

~2

∫ t+

0

dt1

∫ t1

0

dt2〈[H̃ ′1(t1), [H̃ ′1(t2), λj]]〉 = 0, j = 3, 8 (19)

− 1

~2

∫ t+

0

dt1

∫ t1

0

dt2〈[H̃ ′1(t1), [H̃ ′1(t2), λ±]]〉 = −Rδ(t+, t−)λ± (20)

for λ± = λ1 ± iλ2. Here, 〈·〉 refers to an ensemble average over the random noise variable
δ(t), and Rδ(t+, ts) is given by Eq. (1). Under standard assumptions for cumulant expan-
sions, Eqs. (19) and (20) define a time-dependent linear super-operator L(t)[λj], under which
L(t)[λj] = λj for j = 3, 8 and L(t)[λ±] = λ± exp[−Rδ(t+, t−)].

This simple treatment of dynamic noise is superimposed over more complex oscillations of
our unperturbed evolution, governed by unitary U0(t), over which we will average as we did
for the Rabi/Ramsey case above. We initialize and measure the singlet |0〉〈0|, with final singlet
probability

PS =

〈
Tr
{
U †0 |0〉〈0|U0L(t)[|0〉〈0|]

}〉
, (21)

where 〈·〉 here refers to averaging over quasistatic distributions in J and ∆12. We write the
singlet in the primed frame; the singlet is unaffected by U7(β) but applying U †2(φ) gives

|0〉〈0|′ = U †2(φ) |0〉〈0|U2(φ) =
1

3
− sinφ

2

[
λ+ + λ−

]
+

cosφ

2
λ3 +

1

2
√

3
λ8. (22)

Hence, by employing Eq. (22) in Eq. (21), we arrive at nine terms in our expression for PS , three
of them including the echo decay function exp[−Rδ(t+, t−)]. Other terms contain oscillations
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which dephase when we average. For example, Tr
{
U ′†0 (t)λ±U ′0(t)L(t)[λ8]

}
is non-zero and

contains oscillations with respect to Jn, but does not include the relaxation function Rδ(t+, t−).
The final result is

PS(t+, t−) =

1

24

{
10− (1 + 4G)(1 + C) + 4F−(1− C)−B

[
1−
√

3

2

(
K+ −K−e−Rδ(t+,t−)

)]}
, (23)

where

C = e−(σJ t−/~)2/2−Rδ(t+,t−) cos(J̄nt−/~)

K± = e−[σJ (t−±t+)/~]2/8 sin[η − J̄n(t+ ± t−)/2~]

F± = e−(σBt±/~)2

G =
1

2

(
e−[σB(t+−t−)/~)2/4 + e−[σB(t++t−)/~)2/4

)
B =

4

3

(
1− F+ + 2F− − 2G

)
.

To help make sense of this expression, note that at t+ = 0, C = F± = G = 1 andB = K± = 0,
so PS → 0. This is because a perfect Y pulse makes the final singlet probability zero. At very
high t+, C = F± = G = K± = 0 and B = 4/3, so the saturation singlet probability is 23/72,
or 32%. Note that there are no oscillations in t+, which is the point of the Y -echo in contrast
to simpler triple-dot exchange echo experiments. Finally, if there is no gradient whatsoever, so
that σ∆ = 0, then F± = G = 1 and B = 0 at all times, reducing the expression to

lim
σ∆→0

PS(t+, 0) =
3

8
[1− e−Rδ(t+,0)], (24)

the ideal simple echo case.
For the relaxation function Rδ(t+, t−), we consider the 1/f noise spectral density

Sδ(f) =

∣∣∣∣dJdε
∣∣∣∣2A2

e

{
2fL/(f

2 + f 2
L) 0 ≤ f < fL

1/f fL ≤ f <∞
(25)

for which we obtain

lim
fL→0

Rδ(t+, t−) =

∣∣∣∣dJdε
∣∣∣∣2 A2

e

4~2

{
t2−

[
3− 2γ + π − ln[(t2+ − t2−)(πfL)2]

]
+ t2+ ln

(
4

1− t2−/t2+

)
+ t+t− ln

(
1− t−/t+
1 + t−/t+

)}
, (26)
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Figure S4: Three-parameter fits to all Y-echo data. In all panels, data is shown on the left
and the corresponding fit on the right. The detuning is swept across the data sets, corresponding
to changing the Jn value shown to the upper-right of each panel; this value is derived from the
fit. The fit function shown is PS(t+, t−) as given by Eq. (23). The second set in the middle row
is the same as that in Fig. 5C of the main text.
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Figure S5: Fit to t−= 0 band of Y-echo data. The raw data points (which are
averages over 100 single shots) are shown as grey dots. The blue curve shows the
best fit to a+ b(1−PS(t+, 0)), where PS(t+, 0) is given by Eq. (23) using σB/h =
63 kHz. The fitting parameters for this particular detuning bias with standard error
are a = 0.256 ± 0.002, b = 0.639 ± 0.003, J/h = 6.82 ± 0.02 MHz, σJ/h =
0.18 ± 0.04 MHz, and Ae|dJ/dε| = 54.5 ± 0.5 kHz. The light blue shaded region
is the confidence interval for the fit corresponding to the given standard errors.

where γ is Euler’s constant. Note that for the perfect echo condition, t− = 0, this expression
reduces to simple Gaussian decay:

lim
fL→0

Rδ(t+, 0) =

∣∣∣∣dJdε
∣∣∣∣2 A2

e ln 4

4~2
t2+. (27)

For t− 6= 0, the presence of the factor scaling logarithmically with the low-frequency cut-
off fL is a critical part of the model. This term appears in conjunction with our quasi-static
averaging over unfocussed exchange oscillations with variance σ2

J . In principle, these terms are
“double-counted” in our model. Hence we combine these dephasing terms and treat σJ as a free
parameter in our fit, along with Ae. The magnetic field variance σ2

B and |dJ/dε| we take from
the Rabi/Ramsey fit, and we can easily find J for each Y-echo data set by simply fitting fringe
locations in the t− direction.

Despite the numerous approximations used to arrive at Eq. (23), this model fits excellently
to the many features seen in the data for a wide range of Jn values. Figure S4 shows 11 fits to Y-
echo data sets for 11 different values of J . The value σB/h = 63 kHz is used throughout, and no
scaling is used. The only fitting parameters are J , σJ , and Ae. Independent Rabi measurements
of J and dJ/dε are also made, and found to be consistent with the fit results. These whole data
set fits show that the model of Eq. (23) captures all of the systematic features of the data. The
values of σJ which result are comparable to those in the Rabi/Ramsey data.

These whole data set fits, however, are poor for gauging the uncertainty of the parameter to
be measured, Ae. To be more quantitative, we examine the central lobe of the echo (t− = 0),
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whose decay gives the best measure of Ae from this data set. Figure S5 shows an example fit to
an averaged band around t− = 0 for the J/h = 6.79 MHz data set shown in Fig. S4. For this
particular detuning voltage, |dJ/dε|/h = 4.49± 0.01 MHz/mV. The fit to the central lobe, after
dividing the found relaxation time by |dJ/dε|, gives Ae = 12.1± 0.1 µV. Here, the uncertainty
is that of this particular fit, which underestimates the variance from data set to data set. Across
all data sets, we find the estimate of Ae increases at lower J values, although we expect Ae to be
approximately independent of J . The low-J values are less reliable; we find that the uncertainty
of the fit also increases as J is reduced. These phenomena occur because as |dJ/dε| decreases,
the absolute charge noise decreases, and magnetic noise dominates; as a result the reliability of
the fit decreases. We therefore estimate Ae and our uncertainty of it by taking a mean of the
central-lobe fit result for the 11 values of J studied, weighted by the inverse variance for each
fit. Doing so gives the result Ae = 15± 2 µV indicated in the main text.
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