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Supplementary Methods

Here we present further details for the analyses involving hippocampal place cell data, along with
descriptions of the place field and scrambled place field models.

Selection criteria for cells and recordings. During each of the three behavioral conditions (spatial
navigation, wheel running, and REM sleep), only putative pyramidal cells whose average firing rates were
in the 0.2-7 Hz range were used. Putative interneurons, defined as having an average firing rate above 7
Hz over an entire recording session, were excluded. Recordings with at least N=60 neurons satisfying these
criteria were selected for the analyses. A total of 18 recordings from 5 animals met the selection criteria.
These consisted of 9 “open field” spatial navigation data sets from three animals, 5 wheel running data
sets from two animals, and 4 REM sleep data sets from two animals. Periods of REM sleep were detected
from the local field potential using the ratio of total delta power (0.1-3 Hz) to total theta power (5-10 Hz)
in the spectrogram of the EEG. Periods with delta/theta ratio less than 1 were considered REM sleep.

The number of cells and length of each recording were: N = 76 (16 min), N=81 (16 min), N=72 (63
min), N=88 (63 min), N=68 (59 min), N=64 (50 min), N=67 (50 min), N=74 (59 min), and N=66 (60
min) for spatial navigation; N=77 (26 runs, 6 min), N=73 (25 runs, 5 min), N=83 (13 runs, 5 min), N=67
(7 runs, 2 min), and N=64 (10 runs, 3 min) for wheel running; and N=67 (30 s), N=69 (4 min), N=60 (2.5
min), and N=61 (3.5 min) for REM sleep. The N=88 spatial navigation data set was used in Figure 3.

Computation of the pairwise correlation matrices. The cross-correlograms were computed as
ccgij(τ) = 1

T

∫ T
0 fi(t)fj(t+ τ)dt, where fi(t) is the firing rate of the i-th neuron and T is the total duration

of the considered time period. The normalized cross-correlation on a timescale of τmax was computed as

Cij =
1

τmaxrirj
max

(∫ τmax

0
ccgij(τ)dτ,

∫ τmax

0
ccgji(τ)dτ

)
,

where ri is the average firing rate of the i-th neuron (see Supplementary Figure 3).

Simulated spike train data from PF and scrambled PF models. For each cell in the N=88 spatial
navigation data set, place fields Fi(x) were computed using a 100 × 100 grid of pixels. In each pixel, the
number of spike events for each cell was normalized by the time spent at that location, and then smoothed
with a 2-dimensional Gaussian (σ = 5 grid locations, see also Supplementary Figure 9). Simulated spike
trains for the PF model were generated from the place fields as inhomogeneous Poisson processes with rate
functions ri(t) = Fi(x(t)), using the animal’s original trajectory, x(t).

Scrambled place fields F̃i(x) were computed by randomly permuting the pixels in the 100 × 100 grid.
A different permutation was used for each place field, in order to destroy the coherence of the spatial
organization across the population. Similar spike trains for the scrambled PF model were again generated as
inhomogeneous Poisson processes using the original trajectory, x(t), but with rate functions ri(t) = F̃i(x(t))
given by the scrambled place fields (see Supplementary Figure 9). The simulated data sets were analyzed
in Figure 3 at the correlation timescale τmax = 1sec.
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Supplementary Figures
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Supplementary Figure 1: Spectral signatures of matrix structure are destroyed by nonlinear
monotonically increasing transformations. (a) A 100× 100 symmetric matrix A with rank(A) = 4.
(b) The spectrum of A includes four nonzero eigenvalues that are all positive. This is the signature
that A has rank 4 and is positive semidefinite. (c) The graph of the monotonically increasing function
f(x) = (x− 0.2)3. (d) The spectrum of the matrix f(A) contains many nonzero eigenvalues. The spectral
signature that A has low-rank structure has been destroyed by f .
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Supplementary Figure 2: Topological properties of random correlation matrices are similar
to those of random i.i.d. matrices. The N ×N correlation matrix Cij = corr(Xi, Xj) was computed
using 10, 000 samples of N = 88 independent uniformly distributed random variables Xi. Each panel
compares the Betti curves (top) and the persistence lifetimes (bottom) of the random correlation matrices
to those of the random (shuffled) matrices. Each of the three black lines correspond to one instance of such
a correlation matrix. Colored lines and shaded regions correspond to the mean curves and 95% confidence
intervals for the random (shuffled) matrices.
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Supplementary Figure 3: Computation of pairwise correlation matrices from spike train data.
(a) For a pair of spike trains {ti`}`=1...ni

and {tj`}`=1...nj
for neurons i and j (top), the cross-correlogram

ccgij(τ) is computed as

ccgij(τ) =
1

T

∫ T

0
fi(t)fj(t+ τ)dt,

where fi(t) =
∑ni

`=1 δ(t− ti`) is the instantaneous firing rate of the i-th neuron. The graph of a smoothed
ccgij(τ) is displayed (black curve) along with the expected value of the cross-correlogram, rirj (red), for
uncorrelated spike trains with matching firing rates, ri = ni/T . The pairwise correlations Cij (blue line),
with timescale τmax, were computed as

Cij =
1

τmaxrirj
max

(∫ τmax

0
ccgij(τ)dτ,

∫ τmax

0
ccgji(τ)dτ

)
The timescale τmax = 1 sec was used in all but one panel of Figures 3 and 4, while a range of timescales
from 10 ms to 2 sec appears in Figure 3d. (b) The 88× 88 matrix C for the spatial exploration data used
in Figure 3a,b,c. The entry C14,15 corresponds to the cross-correlogram in panel (a).
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Supplementary Figure 4: The rightward and upward shift of the Betti curves can be explained
by either adding noise to geometric matrices, or adding neurons that do not have any geo-
metric organization to a geometrically organized population. (a) N = 70 random independent
uniformly distributed points pi in a d-dimensional unit cube were sampled in dimensions d = N . Noised
geometric matrices were obtained as Aij = −‖pi−pj‖+(ν

√
d)gij , where the terms gij were independent and

normally distributed with zero mean and unit variance, and the noise strength ν took the following values:
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5. Each panel compares the Betti curves of the noised matrices (thin
curves, stratified by the magnitude of the parameter ν) to those of the random matrices (dashed lines)
and also the zero noise geometric matrices (thick curves). Black lines connect the maximum values of the
mean curves for the different levels of noise. Small amounts of noise produce a rightward shift in the peak
values of the Betti curves, while curves for ν = 0.5 are indistinguishable from those of random matrices.
(b) N = 88 random (uniformly distributed) points pi were sampled in the 2-dimensional unit square.
For each k = 2, 4, 8, 16, 32, the first k rows and columns of Aij = Aji = −‖pi − pj‖ were replaced with
random values sampled independently from the uniform distribution on [−

√
2, 0], thus yielding a matrix

with k “non-geometric” neurons. Betti curves β1(ρ), β2(ρ), and β3(ρ) (colored solid lines, stratified by
k) represent averages over 35 trials. These Betti curves are shown superimposed over those of geometric
matrices (d = N ; solid black lines) and random matrices (dashed colored lines) of matching size. More
than 10% of neurons must be non-geometric in order of the Betti curves to leave the geometric regime, but
small numbers of non-geometric neurons increase the apparent dimension of the underlying space.
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Supplementary Figure 5: Two types of random controls. (a) The matrix Cij used in Figure 3a.
(b) A shuffled matrix obtained by randomly permuting the

(
88
2

)
off-diagonal elements of the symmetric

matrix in panel (a). (c) A sample from the maximum entropy (WME) distribution on 88× 88 symmetric
matrices with prescribed expected values of row sums matching those of the matrix in panel (a). The
distribution on each element (i, j) in the matrix is exponential with mean 1

θi+θj
(Hillar & Wibisono, 2013

http://arxiv.org/abs/1301.3321). The parameters θi were obtained by solving the system of equations∑
j 6=i

1

θi + θj
=
∑
j 6=i

Cij , for i = 1, . . . , N,

using standard gradient descent methods (Hillar & Wibisono, 2013). (d) (left) The row sums
∑

j 6=iCij for
the matrix in (a); (right) mean row sums for twenty samples from the distribution described in (c).
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Supplementary Figure 6: Integrated Betti values obtained from neural activity during spatial
navigation are consistent with those of geometric matrices. Integrated Betti values from place cell
data are compared to geometric distributions with matching N across nine recordings of rat hippocampus
during spatial navigation, obtained from three animals. The geometric box plots are shown for the dimen-
sion, d = N , while the shaded area indicates the confidence interval across the dimensions d ≤ N . The
number N of neurons is displayed in color (black, green, and purple) to indicate recordings from the same
animal. Betti values for the place cell data are consistent with those of geometric matrices in all but one
data set (N = 68).
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Supplementary Figure 7: The persistence lifetime distributions, computed from neural ac-
tivity during spatial navigation resemble the geometric controls but are significantly below
those of the shuffled matrices. Persistence lifetime distributions, `1(ρ) (yellow), `2(ρ) (red) and `3(ρ)
(blue), computed from the same data set and controls as those used in Figure 3b. (Top) The lifetime
distributions for the data (solid lines) fall off quickly, while those of the shuffled matrices are much broader
(dashed lines are means over 1000 trials; shading shows the 95% confidence intervals). (Bottom) Here
the data lifetime distributions (solid lines) are overlaid with the mean distributions (faint lines) for 1000
geometric matrices in each dimension d = 5, 10, 16, 24, and 88. As with the geometric Betti curves, the
persistence lifetime distributions for geometric matrices are stratified by dimension, with the top curves
corresponding to the highest dimension.
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Supplementary Figure 8: Clique topology of WME matrices, sampled from the maximum
entropy distribution with prescribed row sums, is similar to that of random (shuffled) ma-
trices. Comparison of Betti curves (top) and persistence lifetimes (bottom) for WME matrices computed
using the matrix Cij used in Figure 3a. Each panel compares the Betti curves (top) and the persistence
lifetimes (bottom) of the WME matrices, computed using the matrix Cij used in Figure 3a, to those of the
random (shuffled) obtained from the same Cij . Each of the three black lines correspond to one sampling
of a WME matrix. Colored lines and shaded regions correspond to the mean curves and 95% confidence
interval for the shuffled matrices.
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Supplementary Figure 9: (a) Example of several place fields computed from spike trains during spatial
exploration in the N=88 data set. (b) Betti curves (bold lines) computed from the simulated spike trains
(τmax = 1sec) for the place field model versus the geometric Betti curves (thin lines stratified by dimen-
sions). (c) Integrated Betti values (bold lines, labelled PF) for the curves in panel (b) lie in the geometric
regime, in agreement with those of the original data. (d) The scrambled place fields corresponding to those
in panel (a). These were obtained by sub-dividing the square into a 100×100 grid and randomly permuting
each pixel. The permutations were independent for each cell. (e) Betti curves (bold lines) derived from
the spike trains (τmax = 1sec) generated using the scrambled PF model versus the geometric Betti curves
(thin lines stratified by dimensions). (f) Integrated Betti values from the scrambled PF model (bold lines,
labelled scPF) lie outside of the the significance threshold (see Supplementary Methods) for the geometric
regime for β̄2 and β̄3. (g) Betti curves (bold lines) derived from the spike trains (τmax = 1sec) generated
using the Scrambled PF model are significantly smaller than those of shuffled controls. (h) Integrated
Betti values derived from from the scrambled PF model (bold lines, labelled scPF) are outside the 99.9%
confidence intervals for the shuffled matrices. Box plots for shuffled matrices are the same as in Figure 3c.
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Supplementary Figure 10: Betti curves and summary stats for the 10x10 grid scrambled
place fields. (a) A single scrambled place field corresponding to the place field in Figure 3e. The
scrambling is performed on a 10 × 10 grid. A cartoon trajectory (white) is displayed together with the
corresponding spike train (bottom). (b) Betti curves from the scrambled place field model (bold lines)
lie outside the geometric regime for β2 and β3. (c) Betti curves for the scrambled place field model are
significantly smaller than the shuffled controls. (d) Integrated Betti values (bold lines, labelled scPF) for
the scrambled place field model also lie outside of the significance threshold (see Supplementary Methods)
for the geometric regime for β̄2 and β̄3, while β̄1 is in the geometric regime. (e) Integrated Betti values
(bold lines, labelled scPF) for the scrambled place field model are outside the 99.9% confidence intervals
for the shuffled matrices. Box plots for geometric and shuffled matrices are the same as in Figure 3c.
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Supplementary Figure 11: The clique topology of spike train correlations during wheel run-
ning and REM sleep is significantly non-random as compared to shuffled matrices. (a) Com-
parison of the data Betti curves (solid lines) for the spike trains during wheel running (N=73 in Figure 4a)
to those of shuffled correlation matrices (dashed lines are means over 1000 trials and shading shows 95%
confidence intervals, as in Figure 1e). For each m = 1, 2, 3, the data Betti curves are orders of magnitude
smaller than those of the shuffled curves. (b) Persistence lifetime distributions (solid lines) for the same
data as in (a), `1(ρ) (yellow), `2(ρ) (red) and `3(ρ) (blue). The lifetime distributions for the data fall off
quickly, while those of the shuffled matrices are much broader (dashed lines are means over 1000 trials;
shading shows the 95% confidence intervals). (c) Comparison of the Betti curves (solid lines) for spike
train correlations during REM sleep (N= 67 in Figure 4b) to those of shuffled correlation matrices (dashed
lines are means over 1000 trials and shading shows 95% confidence intervals, as in Figure 1e). For each
m = 1, 2, 3, the data Betti curves are orders of magnitude smaller than those of the shuffled curves. (d)
Persistence lifetime distributions (solid lines) for the same data as in (c). The lifetime distributions for the
data fall off quickly, while those of the shuffled matrices are much broader (dashed lines are means over
1000 trials; shading shows the 95% confidence intervals).
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Supplementary Figure 12: Integrated Betti values across a range of correlation timescales in
spatial navigation, wheel running, and REM sleep data sets. For each of the datasets, and each
m = 1, 2, 3, the integrated Betti number β̄m =

∫ 1
0βm(ρ)dρ was normalized by its significance threshold

bm = Q3 + 1.5 × (Q3 −Q1) (see Supplementary Methods) that was obtained from the distribution of the
integrated geometric Betti curves β̄geomm =

∫ 1
0β

geom
m (ρ)dρ in dimension d = N , where N was the number of

cells. Each of the curves (yellow, red and blue) correspond to the values of β̄m/bm in dimensions m = 1, 2, 3
respectively. The dashed line marks the line β̄m = bm; the appropriate integrated Betti numbers were
deemed consistent with geometric distribution if they lay below this line. Note that the number N of
neurons is displayed in color (black, green, purple, gray and orange) to indicate recordings from the same
animal; there were a total of 5 animals.
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Supplementary Figure 13: Percentage of integrated Betti values that were not consistent with geometric
controls (i.e. above the significance threshold) across all considered data sets as a function of the correlation
timescale, τmax, used to compute the pairwise correlation matrix (see Methods). The arrow indicates the
1 s timescale used in the main figures. All three behavioral conditions, spatial navigation (black), wheel
running (green) and REM sleep (pink), are consistent with geometric structure at timescales ranging from
.5 s to 2 s. At finer timescales, however, the wheel running and REM sleep correlations are non-geometric,
while the spatial navigation data remains consistent with geometric controls.

For each timescale, we computed integrated Betti values β̄1, β̄2, and β̄3 for all data sets under three different
conditions: (i) spatial navigation, (ii) wheel running, and (iii) REM sleep (see Supplementary Figure 12).
For each behavioral condition, we counted how many Betti values were above the significance threshold
for rejecting the geometric hypothesis at each timescale. Because our significance threshold rejects the
geometric hypothesis at a rate of less than 5%, the p-value for a given condition and timescale satisfies

p <

m∑
`=k

(
m

`

)
(0.05)`(1− 0.05)m−`,

where k is the number of Betti values above the significance threshold, and m is the total number of Betti
values. To obtain this upper bound on p-value, we used a binomial distribution with failure probability
0.05. Note that this assumes Betti values are independent. Although this is a reasonable assumption for
Betti values from different data sets, Betti values from the same data set have statistical dependencies that
are not well-understood.
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1 Introduction

The purpose of this supplement is to provide a more complete account of the mathematics
underlying our analyses in the main text. In particular, the order complex and clique
topology are described more precisely here. The order complex of a matrix is analogous
to its Jordan Form, in that it captures features that are invariant under a certain type
of matrix transformation. Likewise, the clique topology of a matrix is analogous to its
eigenvalue spectrum, in that it provides a set of invariants that can be used to detect
structure. While the Jordan Form and eigenvalue spectrum are invariant under linear
change of variables, the order complex and clique topology are invariant under monotonic
transformations of the matrix entries.

Seeking quantities that are invariant under linear coordinate transformations is nat-
ural in physical applications, where measurements are often performed with respect to
an arbitrary basis, such as the choice of x, y and z directions in physical space. In con-
trast, measurements in biological settings are often obtained as nonlinear (but monotonic)
transformations of the underlying “real” variables, while the choice of basis is meaningful
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and fixed. For example, basis elements might represent particular neurons or genes, and
measurements (matrix elements) could consist of pairwise correlations in neural activity,
or the co-expression of pairs of genes. Unlike change of basis, these transformations are
of the form

Lij = f(Mij),

where f is a nonlinear, but monotonically increasing function that is applied to each entry
of M . The Jordan Form of a matrix, and its spectrum, may be badly distorted by such
transformations; it also discards basis information which may be meaningful and should
be preserved.

Given a symmetric, N ×N matrix that reflects correlations or similarities between N
entities (such as neurons, imaging voxels, etc.), we have two basic questions:

Q1. Is the matrix a monotonic transformation of a random or geometric1 matrix?

Q2. Can we distinguish between these two possibilities, without knowing f?

Perhaps surprisingly, information sufficient to answer these questions is contained in the
ordering of matrix entries, and is encoded in its order complex, to be described in the next
section. To extract the relevant features, we compute certain topological invariants of the
order complex, which we refer to as the clique topology of the matrix. The motivation
for this choice stems from recent mathematical results by M. Kahle [1], describing the
clique topology of random symmetric matrices asymptotically (for large N); and our own
computational results, showing that random and “generic” Euclidean distance matrices
can be readily distinguished using clique topology for N ∼ 100.

We have made an effort to keep these explanations self-contained, but details of how
certain computations are performed have been left to the references for the sake of brevity.
Standard material from algebraic topology [2] is described in a minimal fashion, with an
emphasis on homology of clique complexes. The reader is expected to be familiar with
linear algebra.

Comparison to prior applications in biology

Topological data analysis has previously been used in biological applications to identify
individual persistent cycles that may have meaningful interpretation [3, 4, 5, 6, 7, 8]. In
contrast, our approach relies on the statistical properties of cycles, as captured by Betti
curves, in order to detect geometric structure (or randomness) in symmetric matrices. In
particular, the relevant space from which the data points are sampled may not possess any
meaningful persistent cycles, as in the square box environment covered by place fields.
The background Euclidean geometry, however, has a strong effect on the statistics of
cycles, enabling detection of geometric structure and providing a sharp contrast to Betti
curves of random matrices with i.i.d. entries.

1Recall from the main text that a geometric matrix refers to a matrix of (negative) Euclidean distances
among random points in Rd .
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2 The order complex

Recall that a function f : R → R is said to be monotonically increasing if f(x) > f(y)
whenever x > y. Let f : R → R be a monotonically increasing function. For any
real-valued matrix M , we define the matrix f ·M by

(f ·M)ij = f(Mij).

Note that this action preserves the ordering of matrix entries. That is, if L = f ·M , then
all pairs of off-diagonal entries, (i, j) and (k, `), satisfy:

Lij < Lk` ⇔ Mij < Mk`.

Equivalence classes of matrices can thus be represented by integer-valued matrices that
record the ordering of off-diagonal entries (and carry no information on the diagonal).
Figure 1 shows three matrix orderings for N = 5. For a given symmetric matrix M , we
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Figure 1: Three matrix orderings, reproduced from Figure 2a in the main text.

denote the representative matrix ordering by M̂ , where

M̂ij = |{(k, `) | 0 < k < ` ≤ N and Mk` < Mij}|

simply counts the number of upper-triangular entries of M that are smaller than Mij for

i 6= j, while the diagonal entries of M̂ are left undefined (| · | denotes the size of the set).

If Mij is the smallest off-diagonal entry, then M̂ij = 0; if Mij is the largest matrix entry,

and all upper-triangular entries are distinct, then M̂ij =
(
N
2

)
− 1. With this notation, we

have:

Lemma 2.1. L̂ = M̂ if and only if there exists a monotonically increasing function f
such that L = f ·M .

Proof. (⇐) is obvious, since the action of f preserves the ordering of matrix entries. (⇒)
One can construct f : R → R by setting f(Mij) = Lij for each off-diagonal entry, and

interpolating monotonically (e.g., linearly). Since we assume L̂ = M̂ , this function is
monotonically increasing and well-defined.
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In order to analyze the information present in the ordering of entries for an N × N
symmetric matrix, it is useful to represent it as a sequence of nested simple graphs. Recall
that a simple graph G is a pair ([N ], E), where [N ] = {1, 2, . . . , N} is the ordered set of
vertices, and E is the set of edges. Each edge is undirected and connects a unique pair
of distinct vertices (no self-loops). We will use the notation (ij) ∈ G to indicate that the
edge corresponding to vertices i, j is in the graph.
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a M
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ord(M)=ord(L)

Figure 2: Selected graphs in an order complex, adapted from Figure 1 in the main text.

Definition 2.2. Let M be a real symmetric matrix with matrix ordering M̂ , and let
p = maxi<j M̂ij. The order complex of M , denoted ord(M), is the sequence of graphs

G0 ⊂ G1 ⊂ · · · ⊂ Gp+1,

such that
(ij) ∈ Gr ⇔ M̂ij > p− r for each r = 0, . . . , p+ 1.

Note that G0 has no edges, G1 contains only the edge (ij) corresponding to the largest
off-diagonal entry of M , and subsequent graphs are each obtained from the previous one
by adding an additional edge for each next-largest entry until we reach the complete
graph, Gp+1. A portion of an order complex is illustrated in Figure 2. It is clear from the
definition that:

ord(L) = ord(M) ⇔ L̂ = M̂.
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Because of Lemma 2.1, the order complex ord(M) captures all features of M that are
preserved under the action of monotonically increasing functions.

3 Clique topology

We are now ready to introduce clique topology, a tool for extracting invariant features of
a matrix from the ordering of matrix entries. We begin by describing the clique topology
of a single graph G, by which we simply mean the homology of its clique complex:

Hi(X(G),k),

where k is a field (more on the field in section 3.2). The clique complex, X(G), is defined
in section 3.1; while the simplicial homology groups, Hi(X(G),k), will be defined in
section 3.3. We refer to these invariants as clique topology in order to indicate that we
are measuring topological features of the organization of cliques in the graph, rather than
the usual topology of the graph.

We summarize the information present in clique topology via a set of Betti numbers,
βi(X(G)), which are the ranks of the corresponding homology groups:

βi(X(G))
def
= rank Hi(X(G),k).

The clique topology of a symmetric matrix M, with order complex G0 ⊂ G1 ⊂ · · · ⊂ Gp+1,
is reflected in the sequences of Betti numbers βi(X(Gr)), computed for various dimensions
i = 0, 1, 2, . . . , and for each graph Gr in ord(M) (see section 3.4).

The reader familiar with homology of simplicial complexes, including clique complexes,
should feel free to skip the next few sections and proceed directly to section 3.4, where
we define Betti curves.

3.1 The clique complex of a graph

Recall that a clique in a graph G is an all-to-all connected collection of vertices in G.
An m-clique is a clique consisting of m vertices. Note that if σ is a clique of G, then all
subsets of σ are also cliques.

Definition 3.1. Let G be a graph with N vertices. The clique complex of G, denoted
X(G), is the set of all cliques of G:

X(G) = {σ ⊂ [N ] | σ is a clique of G}.

We write Xm(G) for the set of (m+ 1)-cliques of G.
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The shift in index reflects the “dimension” of a clique, when the clique complex is rep-
resented geometrically. If we think of the vertices of the graph G as embedded generically
in a high-dimensional space, each clique represents the simplex given by the convex hull of
its vertices. For example, the convex hull of two vertices is a 1-dimensional edge, for three
vertices we obtain a 2-dimensional triangle, and four vertices yields a 3-dimensional tetra-
hedron. Thus, cliques in Xm(G) consist of m + 1 vertices, but represent m-dimensional
simplices.

The boundary of a clique σ ⊆ G is the collection of subcliques τ ⊂ σ which have one
fewer vertex. This corresponds to the set of lower-dimensional simplices that comprise
the boundary of the simplex defined by σ (Figure 3b).

The homology of a clique complex X(G), to be defined in section 3.3, is a measurement
of relationships among the cliques in G. Intuitively, homology counts cycles in the clique
complex, a higher-dimensional generalization of the notion of cycles in a graph (Figure
3a). A collection of cliques forms a cycle if their boundaries overlap so as to “cancel” one
another (Figure 3b).

a b 

∂

Figure 3: Illustration of homology cycles in clique complexes.

3.2 Chains and boundaries

To make the above notion of “cancellation” of boundaries precise (and computable), one
introduces linear combinations of cliques, called chains. Given a set of cliques σ1, . . . , σ` ∈
X(G), one can form a vector space consisting of formal linear combinations of cliques with
coefficients in a field k: ∑̀

i=1

aicσi , where ai ∈ k,

and cσi denotes the basis element corresponding to the clique σi. To define chain groups,
one considers linear combinations of cliques of the same size. Recall that Xm(G) denotes
the set of (m+ 1)-cliques of G.

Definition 3.2. The m-th chain group of X(G), with coefficients in k, is the k-vector
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space:

Cm(X(G); k)
def
=

{∑̀
i=1

aicσi | σi ∈ Xm(G) and ai ∈ k for each i = 1, . . . , `

}
.

As we will always be working with coefficients in an aribitrary field k,2 we will omit it
from the notation and write Cm(X(G)) instead of Cm(X(G); k).Note that C0(X(G)) con-
sists of formal linear combinations of 1-cliques (vertices), C1(X(G)) of 2-cliques (edges),
C2(X(G)) of 3-cliques (triangles), and so on.

The boundaries of cliques can also be described algebraically, allowing this notion to
be extended to chains. If σ = {vi}mi=0 is an m-clique of G, we use the notation

cσ = cv0v1...vm ,

where v0 < v1 < . . . < vm (recall that each vi ∈ [N ]). Consistent ordering is important
because it affects the signs in the boundary map. Given a sequence of vertices v0v1 . . . vm,
we denote by v0v1 . . . v̂i . . . vm the sequence obtained by omitting the element vi. Note
that for each σ ∈ Xm(G), the element cσ = cv0v1...vm is a basis element of the vector space
Cm(X(G)).

Definition 3.3. The boundary map ∂m : Cm(X(G))→ Cm−1(X(G)), for m > 0, is given
on basis elements cv0v1...vm by

∂m(cv0v1...vm) =
m∑
i=0

(−1)icv0v1...v̂i...vm ,

and is extended via linearity to general chains; i.e. ∂m(
∑

j ajcσj) =
∑
aj∂m(cσj). The

map ∂0 is defined to be the zero map.

Recall that in the geometric picture, an (m+1)-clique corresponds to a m-dimensional
simplex, and the boundary of this simplex is the set of m-cliques comprising its (m− 1)-
dimensional facets – that is, all subcliques on one fewer vertex. We have thus defined
the boundary of a chain in Cm(X(G)) in a fashion consistent with our geometric under-
standing: as a formal sum of chains in Cm−1(X(G)), corresponding to simplices that are
one dimension lower (see Figure 3b). Note that signs are assigned to the elements of this
formal sum to indicate the orientation of cliques, which will be critical for obtaining the
desired “cancellation” of boundaries (see Remark 3.6 for details).

2For readers uncomfortable with the notion of a general field k, it is relatively harmless to substitute
R or Q for k for the remainder of the discussion. One should keep in mind, however, that the actual
computations typically take place with k a finite field, Z/pZ. This can have an effect on the result: in
such a field, one can add a boundary to itself a finite number of times and get zero, creating “extra”
cycles – called torsion cycles – that would not be present over R. These extra cycles measure aspects of
the clique complex that are not relevant to our purposes. In our software we have chosen the field to be
Z/2Z, but this choice is somewhat arbitrary and not important. So long as all computations are done
using the same field, comparing the resulting homology groups across different graphs is entirely valid.
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Example 3.4. Suppose σ, τ ∈ X2(G) are cliques on vertices {1, 2, 3} and {1, 2, 4} respec-
tively. The boundary of the 2-chain cσ − cτ ∈ C2(X(G)) is

∂2(c123 − c124) = ∂2(c123)− ∂2(c124)
= (c23 − c13 + c12)− (c24 − c14 + c12)

= c23 − c13 − c24 + c14.

The cancellation of c12 reflects the fact that the clique {1, 2} appears twice in the boundary
of cσ − cτ , with opposite orientation. Note also that applying ∂1 to the resulting 1-chain
yields

∂1(∂2(c123 − c124)) = ∂1(c23 − c13 − c24 + c14)

= (c3 − c2)− (c3 − c1)− (c4 − c2) + (c4 − c1)
= 0.

In fact, it is straightforward to check from the definition that the composition of two
subsequent boundary maps always yields 0. In other words,

Lemma 3.5. For any m > 0, ∂m ◦ ∂m+1 = 0.

Remark 3.6. The orientation of cliques can be positive or negative. The vertices of a
clique cv0v1...vm ∈ Xm(G) have a canonical ordering induced by the usual ordering of the
vertices [N ] of G. We define the canonical ordering to have positive orientation for each
clique. Any other ordering can be obtained as a permutation of the canonical ordering,
and the resulting ordering is positive or negative according to the sign of the permutation.
For example, c124 has a positive orientation, while c214 is negatively oriented. When we
compute the boundary of a clique cσ in Definition 3.3, the signs arise as a result of the
induced orientation on the boundary cliques. The result of taking all cliques on the
boundary is the signed sum we obtain in Definition 3.3.

3.3 Homology of a clique complex

For a given graph G, the chain groups Cm(X(G)) can be strung together to form a chain
complex:

0
∂k+1=0// Ck(X(G))

∂k // Ck−1(X(G))
∂k−1 // . . .

∂2 // C1(X(G))
∂1 // C0(X(G))

∂0=0 // 0,

The zeroes at either end of the complex represent the zero-dimensional k-vector space,
and the maps at each end are necessarily the zero map.

If a chain is in the kernel of the boundary map, it is because the (oriented) boundaries
of its constituent cliques cancel one another. This is precisely the desired notion of a
cycle, so the set of m-cycles is exactly ker(∂m); in particular, 1-cycles correspond to the
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usual notion of cycles in a graph. Note also that any chain in Cm(X(G)) which forms the
boundary of a clique in Xm+1(G) is itself a cycle, so its own boundary should be zero.
This is reflected in the fact that ∂m ◦ ∂m+1 = 0 (Lemma 3.5). In particular,

im ∂m+1 ⊂ ker ∂m.

When we are counting cycles for homology, we do not want to consider those which
arise as boundaries of chains, as these are “filled in.” For example, the two clique complexes
in Figure 4 should have the same number of homology 1-cycles. In Figure 4b, we do not
wish to count the chain c23 + c35− c25 ∈ C1(X(G)) as a 1-cycle because it is the boundary
of a clique, c235 ∈ C2(X(G)).

a b 1 2

4 3

1 2

4 3

5

Figure 4: Two clique complexes for graphs on 4 and 5 vertices.

In order to eliminate cycles that are boundaries of higher-dimensional cliques, one com-
putes quotient vector spaces, ker(∂m)/ im(∂m+1).

Definition 3.7. The m-th homology group of X(G) with coefficients in k is the quotient
space

Hm(X(G); k)
def
=

ker(∂m)

im(∂m+1)
.

As with chain groups, we will omit the field from our notation and write simplyHm(X(G)).
Observe that the zeroth homology group is special: since ∂0 = 0, its kernel is always

C0(X(G)). The quotient ker(∂0)/ im(∂1) thus identifies vertices which are connected to
one another, so that H0(X(G)) is a vector space whose basis can be chosen to correspond
to the connected components of G.

Example 3.8. Let G be the graph on four vertices in Figure 4a. The kernel of the boundary
map ∂1 : C1(X(G))→ C0(X(G)) is the one-dimensional space spanned by σ = c12 + c23 +
c34− c14. Indeed, ∂1(σ) = (c2− c1)+(c3− c2)+(c4− c3)− (c4− c1) = 0. Since there are no
cliques of size greater than 2, C2(X(G)) = 0 and hence ∂2 = 0. It follows that H1(X(G))
is precisely the one-dimensional vector space spanned by σ. Furthermore, since C1(X(G))
has dimension 4 and ker ∂1 has dimension 1, it follows that im ∂1 has dimension 3. We
can thus deduce that H0(X(G)) is also one-dimensional, consistent with the fact that G
has just one connected component.
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Next, consider the graph G′ on five vertices in Figure 4b. This graph has been obtained
from G by “attaching” the clique {2, 3, 5}. The kernel of ∂1 is now 2-dimensional, and
is spanned by both σ and a new cycle, τ = c23 + c35 − c25. However, τ ∈ im ∂2, so we
find that H1(X(G′)) continues to be one-dimensional, consistent with our intuition that
G and G′ both have just one cycle that has not been “filled in” by cliques.
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Figure 5: Cross-polytopes generate the minimal clique complexes which produce homology
in each dimension. Adapted from Figure 1 of the main text.

Example 3.9. The smallest example of a graph Gm whose clique complex has non-trivial
m-th homology group is the 1-skeleton of the (m+ 1)-dimensional cross-polytope (Figure
5). Such a graph can be built inductively starting from the graph G0 (Figure 5a), having
just two vertices and no edges. To obtain G1 from G0, we attach two new vertices and
include all edges between the new vertices and the vertices of G0 (Figure 5b). More
generally, to obtain Gi from Gi−1 we attach two new vertices and all edges between
these new vertices and those of Gi−1. Thus, we obtain G2 (Figure 5c) and G3 (Figure
5d), which give minimal examples of graphs whose clique complexes have a non-trivial
homology 2-cycle and 3-cycle, respectively.

A useful characterization of the clique topology of a graph is obtained by simply
tracking the dimensions of the homology groups. This is done via the so-called Betti
numbers.

Definition 3.10. The m-th Betti number of X(G), denoted βm(X(G)), is the rank of
Hm(X(G); k) as a k-vector space.

While this information discards the identities of individual cycles, it is well-suited to
statistical methods as it reduces the clique topology of a graph to a sequence of integers.

3.4 Clique topology across the order complex

We now turn our attention to the clique topology of all graphs in the order complex at
once. For a matrix M , the Betti numbers of the graphs in ord(M) are collected as follows.

Definition 3.11. Let M be a real symmetric matrix and ord(M) = (G0 ⊂ G1 ⊂ G2 ⊂
· · · ⊂ Gp+1) its order complex, where p = maxi<j M̂ij. The m-th Betti curve of M is the
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sequence of numbers {βm(ρr)}p+1
r=1, where ρr is the edge density of the graph Gr, and

βm(ρr)
def
= rankHm(X(Gr)).

As the matrix M will be clear from context, we omit it from the notation.

While each Betti curve is a discrete sequence, we can think of it as being a piecewise
constant function. To simplify comparison, we consider as a summary statistic the integral
of the entire Betti curve. We call this the m-th total Betti number of the matrix M , given
by

β̄m(M)
def
=

p+1∑
r=1

βm(ρr)∆ρr =

∫ 1

0

βm(ρ) dρ,

where ∆ρr is the change in edge density between Gr and Gr−1.
3 Typically, ∆ρr = 1/

(
N
2

)
,

which is the change in density after adding a single edge. As we will see, the β̄m alone can
distinguish between a random symmetric matrix, drawn from a distribution with i.i.d.
entries, and a geometric matrix, which arises from distances between a set of randomly-
distributed points in Euclidean space. Thus, we can use the total Betti number to test
the hypotheses that a matrix is random or geometric.

3.5 Clique topology of random and geometric matrices

In order to interpret the results of computing clique topology for matrices of interest, we
need suitable null models for comparison. This brings us back to our motivating questions
Q1 and Q2 from section 1. Can we use clique topology to reject the hypothesis that a given
matrix is random or geometric? This will be possible if matrices in these categories have
stereotyped Betti curves. In this case, it can be shown that a matrix with a substantially
different Betti curve is unlikely to have come from the given null model distribution, and
a p-value can be assigned to quantify the significance.

Because clique topology depends only on ord(M), it suffices to describe the distribu-
tions of order complexes we obtain for random and geometric matrices. In both families,
the details of the Betti curves change with N ; however, we find that their large-scale
features are robust once N > 50. This means Betti curves can indeed be used to reject
these models.

The distribution of random order complexes arises by sampling a matrix ordering M̂
from the uniform distribution on all such orderings. For N ×N symmetric matrices with
distinct entries {Mij}i<j, this can be achieved by sampling permutations of {0, . . . ,

(
N
2

)
−1}

uniformly at random. Equivalently, the matrix can be chosen with i.i.d. entries drawn
from any continuous distribution, or by shuffling the elements of a given matrix with

3This measurement, β̄m(M), also appears as the first element in the basis for the ring of algebraic
functions on the collection of all persistence structures described in [9].
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distinct off-diagonal entries. Thus, in a graph Gρ of ord(M), each edge has independent
probability ρ of appearing. In other words, the graphs in the order complex are a nested
family of Erdös-Rényi random graphs. The clique topology of such complexes is relatively
well understood from a theoretical perspective [1], with highly stereotyped, unimodal Betti
curves as illustrated in Figure 6a.
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Figure 6: Betti curves for random and geometric matrices. (a) Betti curves of random
matrices with N = 100. The means for the Betti curves β1(ρ) (yellow), β2(ρ) (red),
and β3(ρ) (blue) are displayed with bold lines, while shading indicates 99.5% confidence
intervals. (b) Betti curves of geometric matrices with N = 100. Average Betti curves
are displayed for dimensions d = 10, 50, 100, 1000, 10000, in increasing order (i.e., higher
curves correspond to larger dimensions). (c) The maxima of Betti curves for N = 88
geometric matrices as a function of dimension. Beyond d = N , peak values increase only
slightly and appear to saturate. The d = 104 and d = 105 values are nearly identical, and
far from the peak values for random/shuffled matrices with matching N (dashed lines).
Adapted from Figure 2b of the main text.

A geometric order complex is one arising from the negative distance matrix of a collec-
tion of points embedded in some Euclidean space. We choose negative distance matrices so
that the highest matrix values correspond to the nearest distances; this is consistent with
the intuition that correlations should decrease with distance, as described in the main text.
Sampling such a complex consists of sampling N i.i.d. points, {pi}, from some distribution
on Rd. The associated sequence of clique complexes, X(G0) ⊂ X(G1) ⊂ . . . ⊂ X(Gp+1),
corresponding to a geometric order complex is also referred to as the Vietoris-Rips com-
plex of the underlying points. These complexes have been heavily studied in cases where
the points are presumably sampled from an underlying manifold [10].

In our setting, we sample points from the uniform distribution on the unit cube in Rd.
To our knowledge, the Betti curves of geometric order complexes are largely unstudied.
Our numerical experiments show that they are highly stereotyped (Figure 6b), irrespective
of d for a large range of dimensions. Moreover, the peaks of the geometric Betti curves
are roughly an order of magnitude smaller than those of random order complexes with
matching N , and the peak values decrease rather than increase as we move between β1(ρ)
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to β2(ρ) and β3(ρ). We observed similar Betti curves to those in Figure 6b for values
of d that were orders of magnitude larger than N , testing dimensions up to d = 105

(for N = 88). Beyond d = N , peak values of Betti curves increase only slightly and
appear to saturate, while remaining far from random/shuffled Betti curves (Figure 6c).
The differences between the Betti curves of random and geometric matrices can also be
understood through the lens of persistence lifetimes, which we will describe in section 4.2.

3.6 Some remarks on geometric order complexes

Any matrix ordering M̂ appears with equal probability in the distribution of random
symmetric matrices with i.i.d. entries. The consistency of the Betti curves in Figure 6a
indicates that “most” of these matrix orderings have a similar organization of cliques. For
geometric matrices, the possible matrix orderings are sampled in a highly non-uniform
manner, leading to dramatically different Betti curves. Despite this, it is worth noting
that any matrix ordering can in fact arise from a geometric matrix.

Definition 3.12. A set of points p1, . . . , pN ∈ Rd is called a geometric realization of the
matrix ordering M̂ if the distance matrix Dij = ||pi − pj|| has D̂ = M̂ .

Note that for each collection of three or more points, the (higher) triangle inequalities

implied by the metric impose strong constraints on M̂ . This means that for most matrix
orderings, the probability of sampling a point configuration in the unit cube that yields a
geometric realization of M̂ is vanishingly small. This is why geometric Betti curves are, on
average, so different from those of random matrices. Nevertheless, geometric realizations
do always exist, provided d ≥ N − 1.

Lemma 3.13. Every N×N matrix ordering M̂ that has
(
N
2

)
distinct off-diagonal entries

possesses a geometric realization in (N − 1)-dimensional Euclidean space. Moreover, this
realization can be chosen as

pi =
1√
2

(
~ei −

ε

2

N∑
j=1

Mij~ej

)
,

for small enough ε > 0, where M is any symmetric matrix with ordering M̂ and zeroes
on the diagonal, and {~ei}Ni=1 is the standard orthonormal basis in RN .

Proof. With the choice above, ||pi−pj||2 = ||pi||2+ ||pj||2−2pi ·pj = 1+εMij +O(ε2).

Despite this fact, when we constrain the dimension d of the Euclidean space we do
find matrix orderings that cannot be geometrically realized at all. This was the basis for
our examples in Figure 2a of the main text.

Figure 2a examples from the main text. Here we prove that the d ≥ 2 and d ≥ 3
matrices (reproduced in Figure 1) cannot be geometrically realized in lower dimensions.
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To see why the d ≥ 2 matrix cannot arise from an arrangement of points on a line,
observe that the three smallest matrix entries are M12,M13, and M14. This implies the
three shortest distances in a corresponding point arrangement must all involve the point
p1, which is not possible for points on a line.

To see why the d ≥ 3 matrix cannot arise from an arrangement of points on a plane,
notice that the six smallest matrix entries are Miα, for i = 1, 2, 3 and α = 4, 5. This
means the six smallest distances are those of the form ‖pi − pα‖, for i = 1, 2, 3 and
α = 4, 5. Without loss of generality we can assume ‖pi− pα‖ < 1, and all other distances
are greater than one. Now suppose the points p1, . . . , p5 all lie in a plane. Then p4, p5 ∈
D(p1)∩D(p2)∩D(p3), where D(pi) is a disk of radius 1 centered at pi. Since none of the
disk centers in contained in any of the other two disks, the largest distance between two
points in the intersection D(p1)∩D(p2)∩D(p3) is less than one, and thus ‖p4− p5‖ < 1,
which is a contradiction. We conclude that the matrix cannot arise from points in the
plane. We thank Anton Petrunin for this example.

4 Computational aspects and persistence

Each graph in an order complex, G0 ⊂ G1 ⊂ · · · ⊂ Gp+1, is a subgraph of its successor.
Intuitively, this means that the clique topology of any Gr is closely related to the clique
topology of the previous graph, Gr−1. Exploiting this structure dramatically reduces
the computational complexity of finding Betti curves (defined in section 3.4), and also
provides us with finer matrix invariants in the form of persistence lifetimes of cycles.
This is achieved via persistent homology, an approach that enables homology cycles to be
tracked as we move from one graph in the order complex to the next.

4.1 A brief history of persistent homology

The mathematics underlying persistent homology has existed since the middle of the
twentieth century, in the guise of Morse theory and spectral sequences for the homology
of filtered spaces. Its interpretation as a tool for data analysis, however, is a much
more recent development. One can trace the origins of these applications to work on
size theory in computer vision [11, 12, 13] and alpha shapes in computational geometry
[14, 15, 16, 17]. The use of persistent homology as a tool for the study of data sets relies
on two fundamental and recent developments: computabilty and robustness.

Computability arose from the persistence algorithm, developed first for subsets of
three-dimensional complexes in [17] and then extended to work with general simplicial
complexes in [18]. In addition to the algorithm, these papers introduced the notions
of persistence diagrams and modules. Several software packages [19, 20, 21] have been
developed based on the persistence algorithm, and recent work using discrete Morse theory
has led to further improvements in speed and memory efficiency [22].

14



Robustness to perturbations of the underlying simplicial complexes, on the other hand,
was first explicitly shown through the bottleneck stability theorem of [23]. Further work
has broadened this result by developing more complete theoretical tools for the comparison
of persistence structures, divorcing their stability from any underlying geometry [24, 25,
26]. It is this interpretation of stability that most clearly applies to our study of order
complexes.

Although persistent homology has only recently emerged a tool for studying features
of data, it has already found a broad range of applications [27, 28, 29, 30].

4.2 Persistent homology of order complexes

Here we present the basic ideas in persistent homology, restricted to the special case
of computing clique topology for order complexes. This means we need to apply the
persistence algorithm to filtered families of clique complexes,

X(G0) ⊂ X(G1) ⊂ · · · ⊂ X(Gp) ⊂ X(Gp+1),

where the graphs {Gr} comprise the order complex of a symmetric matrix. In order
to track homology cycles from one clique complex to the next, we need to understand
how the natural inclusion maps on the graphs, ιr : Gr ↪→ Gr+1, translate to maps on
the corresponding cliques, chains, and homology groups, Hm(X(Gr)). This turns out
to be straightforward, as there is an obvious extension to maps on clique complexes,
ιr : X(Gr) ↪→ X(Gr+1), and these in turn can be extended linearly to maps between
chain groups.

Lemma 4.1. Consider the order complex G0 ⊂ G1 ⊂ · · · ⊂ Gp+1. The standard inclusion
maps, ιr : Gr ↪→ Gr+1, induce maps on homology (ιr)m : Hm(X(Gr))→ Hm(X(Gr+1)).

Using these maps, one can follow individual cycles and understand their evolution as
we move from one graph to the next in the order complex. Of particular interest are the
edge densities at which cycles appear and disappear (Figure 7).

Definition 4.2. Let ω ∈ Hm(X(Gr)) be a non-zero cycle which is not in the image of
ιr−1, and let s > r be the smallest integer such that ιs−1 ◦ ιs−2 ◦ . . . ◦ ιr(ω) = 0. We say
that ω is born at r and dies at s, and has persistence lifetime `(ω) = s− r.

For a given order complex, the distribution of persistence lifetimes provides a measure
of matrix structure that is complementary to the Betti curves defined in section 3.4.

4.3 Persistence lifetimes of random and geometric order com-
plexes

Recall that there is a sharp qualitative difference in the Betti curves of random order
complexes and those of geometric order complexes (Figure 6). These differences are also
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Figure 7: Illustration of persistence lifetime. The 1-cycle (yellow) appears at edge density
ρ1 and disappears at ρ3, so it’s lifetime is ` = ρ3 − ρ1.

reflected in the distributions of their persistence lifetimes. While random complexes have
relatively broad distributions (Figure 8a), the geometric complexes are heavily weighted
toward shorter lifetimes (Figure 8b). The shapes of these distributions are a direct con-
sequence of the order in which edges are added in the order complex.
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Figure 8: Persistence lifetimes for random and geometric matrices. (a) N = 100, and
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The qualitative differences in these distributions can be understood by thinking about
dependencies in edge orderings in the order complex. Minimal cycles, represented by cross-
polytopes (Figure 5), are known to constitute the large majority of cycles in random order
complexes [31], and can thus be used to understand the shape of the distribution. Such
a cycle’s lifetime is governed by the density at which the first additional edge appears,
since the extra edge destroys the cycle by creating new cliques. Since the ordering of the
edges is completely random, the lifetimes will be broadly distributed. In contrast, geo-
metric order complexes are constrained by triangle inequalities (and higher-dimensional
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analogues); these produce dependencies in the edge ordering which imposes an upper limit
on the lifetime of small cycles, like the cross-polytopes.4 Persistence lifetimes in geometric
complexes are thus concentrated at short lifetimes.

4.4 CliqueTop software

To compute clique topology for symmetric matrices, we developed the CliqueTop Matlab
package. This software is maintained by Chad Giusti (one of the authors), and is available
on GitHub at https://github.com/nebneuron/clique-top. At the time of this writing,
CliqueTop makes use of one other package: Perseus [22], by Vidit Nanda. Perseus provides
an implementation of the persistence algorithm, and is available at http://www.sas.

upenn.edu/~vnanda/perseus/index.html. Previous versions of CliqueTop also used
the Cliquer software package [32].
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