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1	 Model	Description	
	
The	model	 is	 an	 individual‐based	 stochastic	microsimulation	developed	 in	 C++	using	 a	 daily	 time‐step	
and	 asynchronous	 updating.	 	 Individuals	 in	 the	 model	 carry	 certain	 basic	 attributes	 such	 as	 age,	
attractiveness	 to	 mosquitoes,	 presence/absence	 of	 malaria	 symptoms,	 level	 of	 parasitaemia	 (possibly	
none),	 the	 number	 of	 independent	 clonal	 parasite	 populations	 circulating	 in	 their	 blood,	 the	
presence/absence	of	parasites	in	the	liver	(before	a	blood‐stage	infection),	level	of	acquired	immunity	to	
malaria,	and	drug	levels	in	the	blood.		These	are	described	in	more	detail	below.		The	population	size	in	
the	model	is	set	to	one	million,	as	larger	population	sizes	showed	no	difference	in	qualitative	dynamics.		
The	 sensitivity	 analyses	 in	 section	 17	 were	 carried	 out	 with	 populations	 of	 500,000	 individuals	 (for	
quicker	simulation	runs).		Typical	simulations	for	our	present	analysis	were	run	to	equilibrium	(initially	
checked	visually,	but	all	simulations	reached	this	equilibrium	within	4000	days)	with	no	treatment,	after	
which	treatment	was	initiated	–	for	a	fraction	 f	of	symptomatic	malaria	cases	(known	as	the	“treatment	
coverage”)	–	and	the	simulations	were	run	for	another	twenty	years.		The	treatment	coverage	parameter	f	
was	 varied	 between	 0.5	 and	 0.9	 in	 the	 simulations.	 	 Asymptomatic	 cases	 were	 not	 treated	 in	 our	
simulations.		Our	microsimulation	is	meant	to	model	the	dynamics	of	Plasmodium	falciparum.	
	
Blood‐stage	Parasitaemia.	 	 Each	host	 i	 is	 associated	with	an	asexual	parasite	density	Di,	which	 is	 the	
sum	 of	 the	 densities	 of	 the	 individual	 clonal	 parasite	 populations	 in	 that	 host.	 	 If	 there	 are	 ci	 clonal	
parasite	populations	inside	host	i,	then	we	let	j	=	1,…,	ci	index	these	clonal	populations.		We	let	Rj	be	the	
resistance	profile	of	clonal	population	j,	where	Rj	is	the	set	of	drugs	to	which	the	corresponding	parasite	
population	carries	resistance	(using	the	index‐set	notation	of	Andreasen	et	al	[1]).		As	an	example,	R3	=	∅	
indicates	that	the	third	clonal	population	in	this	host	does	not	carry	any	drug	resistance	genes,	and	R4	=	
{1,	2}	 indicates	 that	 the	 fourth	clonal	population	 in	 this	host	 carries	 resistance	 to	drugs	1	and	2.	 	 	The	
parasite	density	inside	host	i	is	then	described	by	
	

	 , 	 , 	

(1)	
where	 	is	the	relative	fitness	of	a	resistant	parasite	with	resistance	profile	Rj;	the	fitness	of	a	sensitive	

parasite	 is	 defined	 as	w∅=1.	 	 The	 quantity	δj,i	 is	 the	 parasite	 density	 of	 clone	 j	 in	 host	 i,	 and	 	γj,i	 is	 the	
relative	gametocyte	production	of	clone	 j,	with	one	corresponding	to	normal	production	and	zero	to	no	
production.		Typically,	γj,i	is	set	to	zero	for	the	first	four	(children)	or	six	(adults)	days	of	an	infection,	and	
then	 fixed	 at	 one	after	 gametocytes	 begin	 to	 be	 produced;	 this	 is	 slightly	 earlier	 than	 true	 gametocyte	
production,	 the	 reason	 being	 that	 we	 do	 not	 model	 the	 tail‐end	 of	 a	 cured	 infection	 when	 asexual	
parasitaemia	is	zero	but	gametocytaemia	stays	positive	for	one	week	or	more	[2].		Essentially,	the	model	
shifts	the	gametocytaemic	period	to	be	several	days	earlier	so	that	infected	hosts	have	the	same	number	
of	transmissible	days	as	they	would	for	real	infections.		This	adjustment	does	not	affect	our	simulations	as	
we	do	not	model	gametocytocidal	drugs	such	as	primaquine.	The	force	of	infection	of	resistant	type	R	at	
time	t	is	
	

,

all	hosts	

∙ ∙
	∑ 	 , 	 ,:

	

	
(2)	
where	 bi	 is	 the	 biting	 attractiveness	 of	 host	 i	 (drawn	 from	 a	 gamma	 distribution	 with	 coefficient	 of	
variation	 equal	 to	 2.0	 [3]),	 the	 function	 g	 describes	 the	 saturation	 of	 transmission	 probability	 with	
increasing	parasite	density	[4]	(see	section	3),	and	β	is	a	scaling	factor	that	we	vary	to	obtain	a	particular	
entomological	 inoculation	rate	(EIR)	 in	a	given	simulation.	 	Recombination	can	occur	when	a	mosquito	
bites	a	host	with	multiple	clonal	infections.	 	We	assume	that	interrupted	feeding	on	multiple	hosts	does	
not	occur;	the	frequency	of	interrupted	feeding	by	non‐infected	mosquitoes	has	been	estimated	to	be	as	
high	 as	 10%	 [5–7]	 but	 our	 previous	 modeling	 analysis	 [8]	 indicated	 a	 weak	 relationship	 between	
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outcrossing	rate	and	the	evaluation	criteria	we	measure	here	(NTF	and	T.01;	see	section	2).		It	is	assumed	
that	 drug	 resistance	 genes	 are	 located	 on	different	 chromosomes.	 	 The	parasite	densities	 in	 the	 above	
equation	 already	 take	 into	 account	 a	 single	 generation	 of	 segregation	 and	 recombination	 that	 occurs	
inside	the	mosquito.	
	
Parasitaemia	levels	are	set	to	20,000	parasites	per	microliter	at	the	beginning	of	a	symptomatic	episode	
of	 malaria.	 	 Asymptomatic	 cases	 have	 their	 parasitaemia	 levels	 initialized	 at	 1000	 parasites	 per	
microliter,	 after	 which	 the	 parasite	 population	 size	 is	 slowly	 reduced	 by	 the	 immune	 system;	 the	
minimum	and	maximum	durations	of	asymptomatic	parasitaemia	observed	in	the	model	are	60	days	and	
281	days	[9–11],	and	this	varies	with	the	host’s	 immune	status.	 	For	a	multi‐clonal	infection	presenting	
with	clinical	malaria,	symptoms	are	caused	by	one	clonal	parasite	population	(typically,	the	most	recent	
bite)	reaching	a	density	of	20,000	parasites	per	microliter,	while	the	other	parasite	population	sizes	stay	
at	levels	of	<1000	parasites	per	microliter.	
	
Transmission	model.		Genotype‐specific	forces	of	infection	are	stored	in	the	simulation	for	11	days,	and	
new	 infections	are	generated	by	drawing	a	Poisson	number	of	hosts	based	on	each	genotype’s	 force	of	
infection	11	days	ago	(this	11‐day	 lag	mimics	the	course	of	parasite	development	 in	the	mosquito	[12–
14]).	 	Once	 this	number	has	been	drawn,	 the	specific	hosts	to	be	 infected	are	chosen	with	replacement	
relative	 to	 their	 biting	 weights	 bi,	 and	 seven	 days	 later,	 after	 growth	 and	 development	 of	 liver‐stage	
parasites,	these	hosts	will	have	a	newly	emerged	blood‐stage	parasite	population	(50,000	total	parasites).			
	
Immunity	Model.	 	We	 implement	 an	 immunity	model	 in	 each	host	 that	 describes	 the	 general	 level	 of	
acquired	 immunity	 that	 a	 host	 has	 to	 P.	 falciparum	 malaria;	 specific	 immunity	 is	 not	 modeled.	 This	
model’s	immunity	variable	M	ranges	from	zero	to	one,	and	it	is	meant	to	be	interpreted	on	a	relative	scale.		
Its	 two	 biological	 effects	 are	 that	 a	 higher	 level	 of	 immunity	 increases	 parasite	 clearance	 rate	 and	
decreases	the	chances	that	a	new	infectious	bite	leads	to	a	clinical	episode	of	malaria,	similar	to	Filipe	et	
al	[15].		The	immunity‐dependent	parasite	clearance	rate	is	
	

	 0.8036 ∙ 1 	0.9572 ∙ ∙ 	
	
where	Dt	is	the	parasite	density	at	time	t,	and	wR	is	the	fitness	of	the	given	strain	(1	for	the	drug‐sensitive	
strain,	 1	 –	 cR	 for	 a	 single‐drug	 resistant	 strain;	 see	 drug‐resistance	 description	 below).	 	 The	 parasite	
density	is	typically	updated	asynchronously	every	seven	days	(K=7)	in	the	simulation;	validations	were	
done	to	ensure	this	is	not	very	different	from	daily	updating.		If	an	individual	has	another	event	occurring	
(e.g.	 new	 infection,	 clearance	of	 a	different	parasite	 clone)	 then	 the	parasite	density	 is	 updated	earlier	
than	the	scheduled	7‐day	interval.		The	parameters	in	this	equation	are	calibrated	so	that	infections	are	a	
maximum	of	281	days	and	minimum	of	60	days.	 	Details	of	 this	calibration	are	presented	 in	Section	4.		
The	effect	of	immunity	of	symptoms	development	is	described	in	Sections	10	and	11	of	this	document.	
	
Immunity	is	acquired,	at	an	age‐specific	rate,	when	a	host	is	parasitaemic,	and	immunity	wanes	at	an	age‐
independent	rate	when	a	host	is	uninfected.	Immune	acquisition	occurs	slowly	for	children	under	ten,	and	
it	 is	calibrated	so	 that	chronically	 infected	children	achieve	high	 levels	of	 immunity	by	age	nine	or	 ten.		
Naïve	 adults	 acquire	 high‐levels	 of	 malaria	 immunity	 after	 2.5	 to	 3.0	 years	 of	 chronic	 infection.	 	 For	
uninfected	individuals,	substantial	 immune	loss	occurs	after	1.5	to	2.0	years.	 	Sections	10	to	12	contain	
the	 equations	 for	 immune	 loss	 and	 immune	 acquisition,	 as	 well	 as	 a	 descriptions/validations	 of	 how	
parameters	were	chosen.	
	
Clinical/Symptomatic	Malaria.		When	an	individual	in	the	model	acquires	a	new	malaria	infection,	that	
host	will	progress	to	clinical	or	symptomatic	malaria	with	probability	Pclin.		This	is	modeled	as		
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where	M	is	the	immune	level.		This	clinical	feature	of	the	model	was	calibrated	together	with	the	immune‐
acquisition	 component	 of	 the	 model	 so	 that	 age‐specific	 clinical	 incidence	 in	 children	 matched	 field	
observations	at	different	transmission	intensities	[16–20],	and	the	parameter	in	the	exponent	was	set	to	z	
=	4.0	(see	sections	10	to	12).	
	
Pharmacokinetics	 and	 pharmacodynamics	 (PK/PD).	 	 Drug	 action	 was	 modeled	 with	 a	 standard	
concentration‐effect	curve,	and	drug	clearance	was	modeled	with	a	standard	exponential	decay	(section	
9).	 Daily	 killing	 rates,	 or	 parasite	 reduction	 ratios,	 were	 obtained	 from	 past	 PK/PD	 studies	 [21–30].	
Variable	drug	absorption	was	included	so	that	different	individuals	had	different	starting	concentrations	
of	 drug	 (this	 allowed	 treatment	 to	 fail	 sometimes);	 the	 coefficient	 of	 variation	 of	 the	 starting	 drug	
concentration	 was	 varied	 between	 0.1	 to	 0.4.	 This	 coefficient	 of	 variation	 and	 the	 slope	 of	 the	
concentration‐effect	curve	were	varied	for	each	specific	therapy,	to	obtain	a	desired	efficacy	at	28	days.		
As	an	example,	the	maximum	daily	killing	rates	for	artemether,	artesunate,	and	dihydroartemisinin	were	
set	 to	 99.9%	 per	 day.	 	 For	 artemisinin	 combination	 therapies,	 the	 standard	 deviation	 for	 the	 initial	
concentration	 of	 both	 drug	 components	 was	 set	 to	 0.4,	 resulting	 in	 an	 efficacy	 of	 95%,	 and	 these	
parameters	were	used	for	ACTs	in	the	simulations	presented	here.	
	
Drug	resistance	evolution.	 	Evolution	in	clonal	parasite	populations	is	modeled	by	allowing	a	parasite	
population	to	mutate	from	sensitive	to	resistant	to	drug	x,	only	in	the	presence	of	drug	x;	as	in	previous	
modeling	 studies,	 this	model	behavior	 really	 represents	 the	 fixation	of	a	new	mutant,	 but	we	keep	 the	
terminology	 of	 a	 “mutation	 rate”	 to	 be	 consistent	 with	 past	 modeling	 literature.	 In	 the	 simulation,	
mutation	 occurs	 on	 a	 daily	 basis	 with	 a	 certain	 daily	 probability.	 For	 the	 majority	 of	 drugs,	 these	
probabilities	are	unknown.		Hence,	the	probabilities	in	the	model	are	set	so	that	resistance	evolves,	under	
high	drug	coverage,	during	the	20‐year	time	span	that	the	model	is	run.		These	mutation	parameters	were	
set	to	be	the	same	for	all	resistant	genotypes,	including	those	encoding	resistance	to	the	partner	drugs,	as	
the	 relative	magnitudes	 of	 these	mutation	 rates	 are	 unknown.	 In	 the	model	 version	 presented	 in	 this	
paper,	drug‐resistant	genotypes	are	completely	resistant	to	the	action	of	the	drugs	they	are	resistant	to.	
	
Mutation	rates	from	drug‐sensitive	to	drug‐resistant	genotypes	are	a	function	of	the	drug	concentration.		
When	the	drug	concentration	is	zero,	the	mutation	rate	is	set	to	zero.		When	the	drug	concentration	is	a	
full	dose,	the	mutation	probability	is	μ.		We	introduce	a	parameter	k	to	determine	whether	the	probability	
of	drug	resistance	emerging	and	fixing	is	higher	or	lower	at	intermediate	drug	concentrations.	 	Under	a	
simple	 linear	model,	 the	mutation	probability	 falls	 linearly	with	drug	concentration	(k=0.5)	 so	 that	 the	
mutation	rate	is	μ/2	at	half	concentration.		We	also	test	a	model	where	the	mutation	probability	is	twice	
as	high	at	half‐concentration	than	at	full	concentration	(k=2),	and	another	where	the	mutation	probability	
is	four	times	as	high	at	half‐concentration	(k=4).		The	scenarios	in	Figures	1	to	3	in	the	main	text,	and	the	
bottom	panels	of	Figure	4	were	simulated	with	k	=	4.	
	
Each	 resistant	 genotype	 is	 assigned	 a	 fitness	 cost	 cR	 (that	 varies	 between	 0.1%	 and	 1.0%),	 and	 for	
multiple‐resistant	genotypes	fitnesses	are	multiplicative.		The	fitness	component	in	the	force	of	infection	
equation	(2)	is	defined	as	wR	=	1	–	cR.	
	
	
2	 Strategy	Comparison	and	Evaluation	Criteria	
	
Assuming	that	three	ACTs	with	different	partner	drugs	are	available	for	treatment,	three	population‐level	
treatment	strategies	were	compared	in	the	simulations.	 	The	half‐lives	and	efficacies	of	the	therapies	in	
the	 simulation	 were	 set	 to	 mimic	 the	 characteristics	 of	 artesunate‐amodiaquine	 (ASAQ),	 artemether‐
lumefantrine	(AL),	and	dihydroartemisinin‐piperaquine	(DHA‐PPQ).	
	
Multiple	 first‐line	 therapies	 (MFT).	 	 In	 a	 strategy	 of	 multiple	 first‐line	 therapies,	 one‐third	 of	
individuals	are	treated	with	AL,	one	third	with	ASAQ,	and	the	final	third	with	DHA‐PPQ.		If	the	treatment	
coverage	parameter	is	f	=	0.6,	this	means	that	40%	of	individuals	would	not	be	treated	for	a	symptomatic	
malaria	infection	(due	to	lack	of	access,	inability	to	pay,	not	reporting	to	a	clinic	or	pharamacy,	etc.).		The	
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model	would	then	have	20%	of	symptomatic	individuals	treated	with	the	first	ACT,	20%	with	the	second	
ACT,	20%	with	the	third	ACT,	and	40%	would	receive	no	treatment.		Individuals	are	not	pre‐assigned	to	
these	groups;	the	`random	draw’	is	random	for	every	treatment	and	for	every	individual.		In	other	words,	
the	 same	 individual	 can	 receive	 three	different	ACTs	 for	 three	different	 symptomatic	malaria	episodes.		
One	of	the	reasons	that	a	“pre‐assignment	MFT	policy”	was	not	considered	was	that	we	believe	this	type	
of	implementation	would	be	operationally	more	difficult	than	simply	distributing	therapies	randomly.		In	
rural	malaria‐endemic	settings,	individuals	are	unlikely	to	know	their	medical	history,	carry	their	ID	card,	
or	even	accurately	know	an	identifying	piece	of	information	such	as	their	birthday.	
	
Five‐year	cycling.		In	a	5‐year	cycling	strategy,	a	single	ACT	is	used	in	the	population	at	any	one	time	and	
the	ACTs	are	rotated	out	and	switched	every	 five	years.	We	compared	several	 cycling	strategies	 in	our	
previous	 publication	 [8]	 (2‐year	 cycling,	 3‐year	 cycling,	 etc).	 	 Here,	we	 choose	 five	 years	 as	 a	 feasible	
schedule	which	could	be	implemented	at	a	national	level	in	an	endemic	country.		Shorter	cycling	periods	
are	 of	 course	 associated	 with	 improved	 outcomes,	 as	 they	 create	 more	 variability	 for	 the	 parasite	
population	and	slow	down	the	pace	of	resistance	evolution.		The	shorter	the	cycling	period,	the	closer	this	
strategy	approximates	an	MFT	strategy.	
	
Sequential	Deployment.	 	 The	 third	 strategy	 is	 meant	 to	 mimic	 the	 status	 quo	 approach	 of	 rotating	
therapies	 out	 when	 they	 begin	 to	 fail.	 	 We	 call	 this	 ‘sequential	 deployment’,	 and	 under	 this	 strategy	
switches	occur	when	the	treatment	failure	rate	(using	a	60‐day	moving	average)	reaches	10%,	the	WHO	
criterion	for	replacing	first‐line	therapies	[31];	a	one‐year	delay	is	built	in	to	this	strategy	as	it	is	known	
that	switching	first‐line	drugs	at	the	national	level	can	take	a	significant	amount	of	time	and	effort	[32].		
This	 is	optimistic,	but	we	used	this	one‐year	delay	to	compare	the	best	possible	sequential	deployment	
strategy	 against	 the	 two	 alternatives.	 	 In	 our	 previous	 publication,	 this	 strategy	 was	 called	 ‘adaptive	
cycling’	[8].	
	
Multiple	 first‐line	 therapies	with	 one	 non‐ACT	 component.	 	 For	 the	 final	 figure	 in	 the	 paper	 we	
evaluated	 an	 MFT	 strategy	 with	 two	 ACTs	 (ASAQ	 and	 AL)	 and	 one	 non‐ACT	 therapy.	 	 The	 non‐ACT	
component	 in	this	strategy	was	a	combination	therapy	whose	components	have	7‐day	and	10‐day	half‐
lives,	mimicking	the	pharmacodynamics	of	chloroquine	and	sulfadoxine‐pyremethamine.	
	
Four	evaluation	criteria	are	used:	
	
NTF.	 	 The	 number	 of	 treatment	 failures	 per	 100	 individuals	 per	 year	 over	 the	 20‐year	 course	 of	 the	
simulation.		This	measure	is	discounted	with	a	3%	annual	discounting	rate.		Non‐treatments	are	counted	
as	treatment	failures;	if	this	were	not	done,	then	policies	with	low	coverage	(f)	would	appear	optimal	as	
they	would	treat	the	fewest	people	and	drive	resistance	evolution	at	the	slowest	rate.	
	
AMU.		Artemisinin	monotherapy	use	is	a	risk	measure	describing	how	exposed	to	resistance	evolution	the	
artemisinins	 are	 under	 a	 particular	 strategy.	 	 “Exposed”	 in	 this	 context	 means	 “not	 protected	 by	 the	
partner	drug”.		To	compute	the	AMU	measure,	we	run	a	separate	set	of	simulations	with	the	artemisinin‐
resistance	mutation	parameter	 set	 to	 zero,	 and	we	 count	 all	 treated	 cases	 in	which	 an	 individual	with	
parasites	resistant	to	partner‐drug	x	is	treated	with	an	ACT	containing	the	same	partner	drug	x.		We	call	
this	type	of	treatement	de	facto	artemisinin	monotherapy	use	because	only	the	artemisinin	component	is	
acting	in	this	situation.		AMU	is	simply	an	absolute	count	of	all	cases	of	de	facto	artemisinin	monotherapy	
use	during	a	20‐year	simulation.	
	
We	recorded	three	types	of	AMU	measures	in	our	simulation:	by	person,	by	parasite	clone,	and	by	person	
but	 weighted	 by	 the	 number	 of	 parasite	 clones.	 	 Consider	 an	 individual	 with	 5	 clonal	 P.	 falciparum	
infections	 in	 the	 blood,	 two	 of	 which	 carry	 amodiaquine	 resistance.	 	 If	 this	 person	were	 treated	with	
ASAQ,	then	we	could	count	this	as	1	AMU	(‘by	person’	measure),	2	AMU	(‘by	parasite	clone’),	or	2/5	AMU	
(weighted	measure).		All	three	measures	had	similar	behaviors	when	comparing	treatment	strategies.		In	
Figure	3	of	the	main	paper,	we	present	the	weighted	measure.	
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We	 do	 not	 discount	 the	 AMU	 measure	 as	 we	 are	 trying	 to	 compare	 the	 relative	 probabilities	 across	
treatment	strategies	 that,	over	a	20‐year	period,	a	novel	artemisinin‐resistance	genotype	could	emerge	
and	establish	itself.	 	Alternatively,	AMU	can	be	thought	of	as	the	total	amount	of	“selection	pressure	via	
artemisinin	 monotherapy”	 present	 during	 a	 20‐year	 period.	 Comparisons	 using	 a	 discounted	 AMU	
measure	were	qualitatively	identical	to	those	shown	in	Figure	3	of	the	main	text.	
	
UTL.		In	an	MFT	strategy,	this	is	the	time	until	the	treatment	failure	rate	reaches	10%.		Treatment	failure	
is	computed	 in	all	 simulations	as	a	moving	average	over	 the	past	60	days	as	 this	 is	what	 is	 likely	 to	be	
picked	up	by	 surveillance	systems.	 	For	 the	cycling	and	sequential	 strategies,	 the	UTL	 is	defined	as	 the	
total	 time	 during	 the	 20‐year	 simulation	 that	 the	 treatment	 failure	 rate	 is	 below	 10%.	 	 Note	 that	 the	
treatment	 failure	 rate	 computed	 in	 the	 simulation	 includes	 the	 usual	 expected	 treatment	 failure	 even	
when	the	parasite	population	is	drug‐sensitive.		For	this	reason,	the	UTL	would	not	be	a	useful	measure	
for	a	drug	or	therapy	with	91%	efficacy	as	10%	treatment	failure	could	be	reached	very	quickly.	
	
T.01.		The	time	at	which	the	“genotype	frequency	of	all	resistant	alleles”	reaches	1%	in	the	population.		If	
four	 drugs	 are	 being	 used	 in	 the	 population,	 then	 each	 parasite	 can	 be	 a	 single‐resistant,	 a	 double‐
resistant,	a	triple‐resistant	or	a	quadruple‐resistant.		If	p1	is	the	frequency	of	single‐resistant	genotypes,	
p2	the	frequency	of	double‐resistant	genotypes,	etc.,	then	the	“genotype	frequency	of	all	resistant	alleles”	
is	
	

1
4

1
2

3
4

.	

	
The	frequencies	are	calculated	across	parasite	clones.		This	quantity	is	equivalent	to	the	probability	that	if	
a	 parasite	 genotype	 is	 chosen	 at	 random	 and	 a	 drug	 is	 chosen	 at	 random,	 that	 the	 parasite	will	 carry	
resistance	to	that	drug.	
	
Statistics.		When	two	strategies	were	compared,	typically	50	or	100	model	simulations	were	run	under	
each	strategy.		To	compare	the	distribution	of	100	NTF	values	from	one	strategy	to	100	NTF	values	from	
another	strategy,	four	statistics	were	used.		The	25th,	50th,	and	75th	quantiles	of	the	distributions	were	
compared,	by	assuming	that	the	two	distributions	had	the	same	quantiles	(null	hypothesis),	counting	NTF	
values	that	fell	above/below	the	common	quantile	for	both	strategies,	and	comparing	the	resulting	four	
numbers	with	a	χ2	test	with	one	degree	of	freedom	(Mood’s	test).		In	addition,	the	Mann‐Whitney	test	was	
used	 to	 compare	 the	 ranks	 of	 the	 two	distributions.	 	When	we	write	p	 <	 10‐6	 for	 a	 particular	 strategy	
comparison,	 this	 indicates	that	all	 four	p‐values	were	smaller	than	10‐6.	 	 	When	we	write	p	>	0.10	for	a	
particular	strategy	comparison,	this	indicates	that	all	four	p‐values	were	larger	than	0.10.			
	
	
3	 Gametocytaemia	and	Infectivity	
	
Ross	and	colleagues	developed	a	statistical	model	that	described	the	relationship	between	host	infectivity	
to	mosquitoes	and	asexual	parasite	density	and	fit	that	model	with	data	from	392	neurosyphilis	patients	
treated	 with	 malaria	 therapy	 [4].	 In	 their	 model,	 the	 relationship	 between	 gametocyte	 density	 and	
asexual	parasite	density	was	described	as	
	

ln 	~	 ln Υ , 	
	
where	 	is	 the	 density	 of	 functional	 female	 gametocytes	 in	 an	 individual,	Υ	(upsilon)	 is	 the	 asexual	
parasite	density,	 	is	the	parameter	that	tells	us	the	proportion	of	asexual	parasites	that	have	developed	
into	 gametocytes,	 and	 	is	 the	 standard	 deviation.	 Then	 the	 probability	 that	 at	 least	 one	 functional	
gametocyte	is	taken	up	is	defined	as	
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Pr ∗ 	Φ
ln Υ ln	 ∗

Φ
ln Υ ∗ 	

	
where	 ∗	is	 the	 gametocyte	 density	 (per	 microliter)	 required	 for	 a	 mosquito	 to	 take	 up	 at	 least	 one	
functional	gametocyte	during	one	blood	meal;	Φ	is	cumulative	distribution	function	(CDF)	of	the	standard	

normal	distribution	and	 ∗ 	 ∗

.		If	the	volume	of	the	blood	meal	is	assumed	to	be	3µl	[33]	then	

∗ .	 	 And,	 if	 the	 sex	 ratio	 between	male	 and	 female	 gametocytes	 is	 1:1	 then	 the	 probability	 that	 a	

mosquito	is	infected	by	taking	up	both	male	and	female	gametocytes	is	Pr ∗ .	The	best	fit	values	
from	this	data	set	were	 0.00031	 	95%	 :	0.00027 0.0036 	and	 3.91	 95%	 :	3.72 4.10 .	
	

In	our	simulation,	we	use	this	Ross	et	al	(2006)	function	Pr ∗ Φ
.

1.7852 	to	describe	

the	per‐bite	infectivity	of	an	individual	with	an	asexual	parasite	density	Υ.		An	individual	with	a	parasite	
density	 of	 10/μl	 will	 have	 approximately	 a	 1%	 chance	 of	 infecting	 a	 mosquito.	 	 An	 individual	 with	 a	
parasite	density	of	1000/μl	will	have	approximately	a	25%	chance	of	infecting	a	mosquito.	
		
	
4	 Duration	of	Infection	
	
Using	 the	malaria	 therapy	 data,	 Maire	 et	 al	 [10]	 computed	 the	 duration	 of	 an	 untreated	 infection.	 Of	
patients	whose	infection	duration	was	longer	than	two	months,	the	 log‐mean	of	the	untreated	infection	
durations	for	47	patients	was	5.13	(σ=0.80),	which	corresponds	to	a	mean	of	169	days	(±	1σ	range:	76	–	
376).	 	Eyles	and	Young	[9]	described	the	course	of	malaria	infection	in	22	neurosyphilitic	patients	with	
malaria	therapy	and	presented	an	average	duration	of	infection	of	222	±	117	days	for	patients	where	the	
entire	course	of	continuous	and	intermittent	parasitaemia	was	followed	until	they	were	defined	as	cured	
or	 cleared	 (6	 months	 of	 zero	 parasitaemia).	 	 For	 a	 larger	 group	 of	 38	 patients,	 the	 initial	 course	 of	
continuous	parasitaemia	was	calculated	as	121	±	58	days.	 	These	patients	were	normally	untreated	and	
occasionally	received	quinine	treatment	during	clinical	episodes.	
	
In	the	World	Health	Organization’s	Garki	Project	Report	[11],	the	daily	clearance	rate	ranged	from	0.002	
to	0.018	(approximately,	according	to	the	Figure	31	of	the	report),	corresponding	to	an	infection	duration	
between	 55	 and	 500	 days	 (in	 the	 absence	 of	 interventions).	 	 This	 graph	 also	 shows	 an	 increasing	
clearance	rate	with	age	which	is	likely	due	to	the	development	of	immunity	in	older	individuals.	
	
In	 our	 simulation,	 we	 define	 the	 duration	 of	 infection	 as	 the	 number	 of	 days	 that	 an	 untreated	 or	
inadequately	 treated	 individual	 clears	all	blood‐stage	parasites	 (by	action	of	 the	 immune	system	only).		
Using	the	reference	data	above,	we	set	60	days	and	300	days	as	the	lower	and	upper	limits	for	infection	
duration,	 for	 fully	 immune	 and	 immunologically	 naïve	 individuals,	 respectively	 (see	 section	 10	 for	 the	
immunity	model	 in	 the	 simulation).	 	 Because	 immunologically	 naïve	 individuals	 acquire	 some	 level	 of	
immune	protection	during	the	course	of	a	malaria	 infection,	a	300‐day	parasitaemia	 is	never	observed.	
The	maximum	observed	parasitaemia	in	the	simulation	is	281	days	for	a	naïve	1‐year‐old	child	and	197	
days	for	a	naïve	20‐year‐old	individual.	
	
	
5	 Probability	that	an	Infectious	Bite	Causes	an	Infection	
	
From	 February	 1986	 to	 October	 1987,	 Beire	 et	 al	 conducted	 an	 epidemiological	 and	 entomological	
investigation	 of	 malaria	 incidence	 in	 809	 children	 in	 Saradidi	 (western	 Kenya)	 to	 investigate	 the	
relationship	 between	 P.	 falciparum	 incidence	 and	 EIR	 [34].	 	 Using	 clinical	 incidence	 reports	 and	 EIR	
measurements	 from	 household	 vector	 studies,	 the	 authors	 found	 that	 7.5%	 (1	 in	 13)	 of	 sporozoite	
inoculations	produced	new	infections	in	children	in	Saradidi.	 	The	measured	EIR	during	this	period	was	
0.75	infective	bites	per	person	per	night	or	273	bites	per	person	per	year.		
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A	 parallel	 study	 in	 Saradidi	 [35]	 indicated	 that	 adults	 were	 less	 susceptible	 to	 malaria	 compared	 to	
children	given	the	same	level	of	exposure.		In	the	same	village	during	a	high‐transmission	period,	57	of	62	
children	(92%)	experienced	parasitaemia	within	56	days	and	all	children	developed	parasitaemia	by	day	
84,	 while	 only	 16%	 (day	 56)	 and	 58%	 (day	 84)	 of	 adults	 developed	 parasitaemia.	 All	 participants	
received	radical	cure	at	the	beginning	of	the	study.		Thus,	the	probability	of	developing	parasitaemia	after	
receiving	 an	 infectious	 bite	 likely	 depends	 on	 an	 individual’s	 level	 of	 immunity	 (possibly	 sporozoite‐
blocking	immunity,	but	this	is	not	known).	
	
In	our	simulation,	we	use	a	single	parameter	to	define	the	probability	that	an	infectious	bite	causes	a	new	
infection,	as	there	are	still	not	enough	data	to	accurately	measure	the	age	dependence	of	this	parameter.		
We	keep	this	probability	constant	at	10%	across	all	age	groups.		
	
	
6	 Age‐specific	All‐cause	and	Malaria	Mortality		
	
Considering	 DSS	 data	 from	 seven	 sites	 in	 sub‐Saharan	 Africa	 from	 2001‐2005	 [36],	 malaria	 mortality	
ranged	 from	 2.5	 to	 8.2	 deaths	 per	 1000	 children	 per	 year.	 	 Age‐specific	mortality	 rates	 are	 shown	 in	
Figure	1	of	this	paper.	 	Extracting	these	numbers	from	the	graphs	and	averaging	across	sites,	we	obtain	
the	table	below:	
	

Age	 All‐cause	Mortality Malaria	Mortality
0.1	 170.2 27.4
0.3	 58.7 23.8
0.6	 60.6 28.3
0.9	 62.4 31.5
1.1	 52.3 23.4
1.4	 43.7 19.6
1.6	 37.8 16.2
1.9	 31.4 13.4
2.6	 21.3 19.2
3.5	 10.1 9.6
4.4	 5.0 4.2
5.4	 4.9 2.7
6.5	 3.8 1.9
7.5	 3.0 1.2
8.5	 2.7 1.8
9.4	 2.9 1.7
10.4	 2.2 1.0
11.5	 2.1 1.5
12.5	 2.2 1.6
13.4	 2.3 0.9
14.4	 1.8 0.8

	
Table	 S1.	 Averaged	 age‐specific	mortality	 (per	 1000	 person‐years)	 from	 seven	 sites	 in	 Burkina	 Faso,	
Ghana,	Kenya,	Tanzania,	and	Mozambique.		Note	that	because	the	ages	are	extracted	from	graph,	they	are	
not	all	exact	integers.	
	
Combining	 this	with	 a	 longitudinal	 data	 set	 on	 60,000	 individuals	 in	Burkina	 Faso	 from	1999	 to	 2003	
[37],	we	 summarize	age‐specific	 all‐cause	mortality	 and	 age‐specific	malaria	mortality	 in	 the	 following	
table:	
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	 <1	year	 1‐4	years 5‐14	years 15‐59	
years	

>	60	years	 Reference

All‐cause	mortality		 60.5	 23.6 2.8 5.9 54.7	 Becher	et	
al	

Malaria	mortality		 23.4	 10.4 0.7 0.4 10.2	 Becher	et	
al	

All‐cause	mortality		 80.84	 28.79 2.98 No	data No	data	 Abdullah	
et	al	

Malaria	mortality		 26.86	 15.09 1.77 No	data No	data	 Abdullah	
et	al	

	
Table	S2.	Annual	mortality	(per	1000)	by	age	group,	data	extracted	from	Becher	et	al	[37]	and	Abdullah	
et	al	[36].	
	
	
With	 these	 two	datasets,	we	construct	 an	age‐specific	mortality	pattern	 (malaria	 attributable	 and	non‐
malaria	attributable)	that	we	would	expect	to	observe	in	a	high‐transmission	region.			
	
	

Age‐Group	 0‐1	 1‐2	 2‐3 3‐4 4‐5 5‐6 6‐7 7‐8 8‐9 9‐10 10‐
15	

15‐
20	

20‐
60	

>60

All‐cause	
Mortality	

80.84	 37.29	 20.94 12.14 6.65 4.54 3.88 3.16 2.88 2.60 2.25	 5.9	 5.9	 54.7

Malaria	
Mortality	

26.86	 18.36	 14.07	 11.02	 5.51	 2.93	 1.92	 1.63	 1.59	 1.53	 1.27	 0.4	 0.4	 10.20	

Non‐Malaria	
Mortality	

53.98	 18.94	 6.87 1.12 1.14 1.61 1.95 1.53 1.30 1.07 0.98	 5.5	 5.5	 44.5

	
Table	S3.		Expected	age‐specific	mortality	per	1000	persons	per	year	in	a	high‐transmission	region.	
	
The	mortality	not	attributable	 to	malaria	 is	 input	directly	 into	 the	demographic	part	of	 the	 simulation;	
however,	 malaria	 mortality	 depends	 on	 transmission	 and	 must	 be	 input	 as	 a	 per‐case	 probability	 of	
death.	 	 In	 the	 simulation,	 we	 count	 failed	 treatments	 and	 non‐treatments,	 but	 we	 do	 not	 distinguish	
between	severe	malaria	and	uncomplicated	malaria	in	these	cases.		Using	summary	information	from	the	
WHO	[38],	we	assume	that	the	percentage	of	symptomatic	malaria	cases	that	progresses	to	severity	is	5%	
for	the	0‐5	age	group	and	1%	for	individuals	over	five	years	of	age.			
	
In	a	meta‐analysis	of	malaria	clinical	trials	conducted	through	2002,	Myint	et	al	summarized	the	mortality	
rates	for	uncomplicated	and	severe	malaria,	for	which	the	probabilities	of	death	were	0.03%	and	13.9%,	
respectively	[39].		These	numbers	are	for	treated	patients.		The	assumptions	in	Goodman	et	al	[38]	have	
the	under‐five	case	fatality	for	severe	malaria	at	19.2%	if	treated	and	50%	if	untreated;	the	over‐five	case	
fatalities	used	are	10%	for	treated	patients	and	25%	for	untreated	patients.		Depending	on	how	many	of	
the	treated	patients	were	receiving	failing	treatments	and	how	many	would	progress	to	severe	malaria	
under	 these	 circumstances,	 the	 malaria	 mortality	 for	 a	 “treated	 patient	 population”	 should	 be,	
approximately,	 between	0.1%	 and	 1.0%	of	 all	malaria	 cases.	 	 For	 untreated	patients,	 the	 total	malaria	
mortality	rate	could	be	as	high	as	2.5%	in	under‐fives	and	0.5%	in	over‐fives.	
	
In	our	simulation	we	set	 the	mortality	rate	 for	untreated	malaria	 to	4%	for	age	group	0‐1,	2%	for	age‐
group	2‐5,	 0.4%	 for	 age‐group	6‐10,	 and	 0.1%	 for	 older	 age	 groups.	 	 Successfully	 treated	 cases	 in	 our	
simulation	result	 in	zero	mortality,	and	unsuccessfully	 treated	cases	have	 the	same	mortality	profile	as	
untreated	 cases.	 	 When	 evaluating	 our	 comparison	 criteria	 (section	 2)	 we	 decided	 not	 to	 include	
mortality	as	one	of	the	reported	measures,	as	the	mortality	measure	correlated	very	closely	to	our	`failed	
treatment	measure’	(NTF).	
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7	 Age	Structure	
	
The	 current	 implementation	 of	 our	 individual‐based	 simulation	 is	 not	 intended	 to	 represent	 any	
particular	 country;	 however,	 we	 must	 choose	 a	 population	 age	 structure	 for	 the	 simulation.	 	 In	 the	
current	implementation,	we	use	the	population	age	structure	of	Tanzania,	obtained	from	the	web	site	of	
the	Tanzanian	National	Bureau	of	Statistics	(see	Table	S5	below).		The	initial	population	size	for	each	age	
0	to	14	will	be	calculated	based	on	these	numbers;	for	other	ages,	the	population	size	for	each	one‐year	
age	band	is	obtained	by	equally	dividing	the	age	classes	below.	
	

	
	

	
Table	S4.	Population	distribution	of	Tanzania	
	
In	2013,	the	birth	rate	of	Tanzania	is	estimated	at	37.25	births	per	1000	population	per	year.	Note	that	
with	a	birth	 rate	of	37.25	births	per	1000	population	and	 the	death	rate	as	described	 in	 section	4,	 the	
population	size	of	the	simulation	will	double	after	30	years.	
	
	
8	 Parasite	Density	Levels	
	
(a)		 Asymptomatic	Hosts	
	
In	 a	 study	 of	 314	 asymptomatic	 children	 in	 Kampala,	 Uganda,	 Nsobya	 et	 al	 [40]	 showed	 that,	 at	 the	
enrollment	point	of	the	study	when	all	children	were	asymptomatic,	the	asexual	parasite	densities	had	a	
range	between	16	and	71840	parasites	per	microliter,	with	a	geometric	mean	parasite	density	(GMPD)	of	
2630	parasites	per	microliter.	
		
In	a	study	from	Gabon	in	1995,	10	children	aged	from	5	to	11	with	positive	thick‐film	blood	smears	for	P.	
falciparum	and	no	symptoms	for	at	least	5	days	were	followed	daily	for	7	days	and	then	every	2	to	3	days	
until	symptoms	appeared	[41].	The	duration	of	the	asymptomatic	state	for	the	10	children	ranged	from	7	
to	38	days	and	parasitaemia	remained	low	(ranging	from	10	to	10,000	parasites	per	microliter)	during	
the	 asymptomatic	 state	 and	usually	 increased	with	 the	 appearance	 of	 symptoms	 (in	 8	 of	 10	 children).		

Age	 Population	
%	of	Total	
Population	

Age	Group	 Population	
%	of	Total	
Population	

0	 1,499,389	 3.34% 15‐24 8,562,875	 19.06%	
1	 1,349,091	 3.00% 25‐34 6,302,172	 14.03%	
2	 1,477,998	 3.29% 35‐44 4,340,066	 9.66%	
3	 1,456,609	 3.24% 45‐54 2,716,946	 6.05%	
4	 1,490,745	 3.32% 55‐64 1,544,557	 3.44%	
5	 1,412,917	 3.14% >65 1,736,851	 3.87%	
6	 1,420,161	 3.16% 	

7	 1,394,553	 3.10% 	

8	 1,279,389	 2.85% 	

9	 1,152,017	 2.56% 	

10	 1,340,272	 2.98% 	

11	 951,527	 2.12% 	

12	 1,443,723	 3.21% 	

13	 1,022,836	 2.28% 	

14	 1,034,229	 2.30% 	
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However,	some	children	had	more	than	2500	parasites	per	microliter	for	several	days	without	developing	
symptoms.	The	appearance	of	 symptoms,	 in	all	10	children,	was	coupled	with	 the	occurrence	of	a	new	
parasite	genotype.		An	immunological	hypothesis	consistent	with	this	observation	is	that	the	children	had	
a	moderate	 amount	of	 specific	 immunity	 to	 their	 resident	 parasites,	 but	 this	 immunity	was	not	 strong	
enough	 to	 prevent	 a	 clinical	 episode	 caused	 by	 a	 newly	 acquired	 parasite.	 The	 short	 duration	 of	
asymptomatic	parasitaemia	in	this	study	is	likely	due	to	the	fact	that	the	study	was	conducted	in	a	high	
EIR	area	(EIR	≈	50)	where	new	infectious	bites	occur	frequently.	
	
Data	from	a	study	conducted	in	Madagascar	from	1996	to	2005	show	age‐stratified	histograms	of	parasite	
density	among	541	asymptomatic	P.	falciparum	malaria	patients	(Figure	5	in	their	paper)	[42].		Across	all	
age	groups,	the	majority	of	asymptomatic	cases	had	parasite	densities	lower	than	500.		A	relatively	high	
parasite	 density	 (>500parasites/μl)	 was	 observed	 in	 ~50%	 of	 children	 under	 ten	 and	 ~25%	 of	
individuals	older	than	ten.		A	very	high	asymptomatic	parasitaemia	(>5000	parasites/μl)	was	observed	in	
~15%	of	under‐tens	and	<2%	of	individuals	over	the	age	of	ten.	
	
In	our	simulation,	we	use	1000	parasites/μl	as	the	initial	parasite	density	for	an	asymptomatic	individual.		
During	the	asymptomatic	phase,	parasite	density	decreases	according	to	the	host’s	level	of	immunity	until	
it	 reaches	0.002	parasites	per	microliter	which	we	define	as	the	“cure	 level”	where	parasitaemia	 in	 the	
simulation	is	set	to	zero.	
	
(b)		 Symptomatic	Hosts	
	
It	is	generally	accepted	that	the	total	parasite	burden	for	a	symptomatic	patient	varies	from	1010	to	1012	
parasites	 [43].	Hence,	 for	symptomatic	adults	and	children	we	set	 the	 initial	parasite	density	at	20,000	
parasites/microliter	 (1011	 total	 parasites),	 assuming	 that	 an	 adult	 individual	 has	 5	 liters	 of	 blood.	 For	
children	the	total	parasite	burden	will	be	lower	than	1011	parasites	per	symptomatic	infection.	
	
(c)		 Detection	Level	of	Microscopy	
	
A	review	of	malaria	diagnostic	tools	shows	that	the	detection	limit	of	microscopy	has	been	estimated	to	
be	 4‐20	 parasites/microliter;	 however,	 in	 field	 conditions,	 a	 detection	 level	 of	 around	 50‐100	
parasites/microliter	is	more	realistic	[44].		In	our	simulation,	the	detectable	parasite	density	is	chosen	as	
10	parasites/microliter	and	this	threshold	is	used	to	determine	the	blood‐slide	prevalence,	as	shown	in	
Figure	1	of	the	main	paper.	
	
	
9	 Pharmacokinetics	/	Pharmacodynamics	
	
Each	individual	is	assigned	a	relative	drug	concentration	value	(relative	to	the	initial	concentration)	for	
each	drug	that	he	or	she	has	received	during	a	treatment.		We	use	a	basic	pharmacodynamic	(PD)	model	
to	describe	the	exponential	waning	of	drug	concentration:	
	

C=C0 ∙ 	
	
where	t	 is	time	in	days,	k1	 is	 the	elimination	rate	constant,	and	C0	is	 the	maximum	initial	concentration	
after	dosing.		When	an	individual	is	treated,	the	initial	drug	concentration	C0	will	be	drawn	from	a	normal	
distribution	with	mean	of	one	and	standard	deviation	ranging	from	0.1	to	0.4;	C0	will	be	constrained	to	be	
within	 the	 range	 [1‐3*sd,	 1+3*sd].	 By	 adjusting	 the	 value	 of	 the	 standard	 deviation,	 we	 can	 vary	 the	
efficacy	of	a	particular	drug.		
	
The	relationship	between	k1	and	drug	half‐life	is	given	by	the	following	equation:	
	

ln 2
∗ 	
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where	 ∗	is	the	half‐life	of	the	drug.	
	
To	 formulate	 the	 pharmacokinetic	 (PK)	 model,	 a	 modified	 version	 of	 the	 standard	 Michaelis‐Menton	
equation	(which	is	known	as	Hill’s	equation	)	was	used	[45]:	
	

_ _ _ _ ∙ 	

	
is	the	fraction	of	parasites	that	are	killed	in	a	given	day.	 	The	value	C	 is	the	current	drug	concentration,	

	is	 the	 maximum	 fraction	 of	 parasites	 that	 can	 be	 removed	 by	 a	 drug	 in	 one	 day,	 	is	 the	
concentration	level	corresponding	to	50%	effect,	and	n	is	the	slope	of	the	concentration‐effect	curve.		In	
the	simulation,	the	parasite	density	is	updated	according	to	the	following	equation:	
	

1 ∙ 1 .	
	
We	 can	 consider	 the	 term	 1 	as	 the	 parasite	 reduction	 ratio	 and	 1 	as	 the	 initial	
parasite	reduction	ratio.	 In	 the	simulation,	estimated	 in	vivo	PRR	values	of	different	drugs,	as	shown	in	
Table	1	of	[21],	correspond	to	the	following	 	values	for	the	following	antimalarial	drugs:	
	
Antimalarial	drugs	 PRR/day 	
Artemnisinin,	artesunate,	
artemether	

10^2	– 10^2.5 0.99	 – 0.9968;	 see	 also	 [46]
for	a	higher	estimate	

4‐Aminoquinoline	(Cholorquine,	
Amodaquine),	halofantrine	

10	– 10^2 0.9	– 0.99	

Quinine,	mefloquine,	sulfadoxine‐
pyrimethamine	 	

10^0.5	– 10^1.5 0.68	– 0.9684	

Antimalarial	antibiotics	
(doxycycline,	clindamycin),	
desferrioxamine	

10^0.35	– 10^0.5 0.55	– 0.6838	

	
Table	S5:	Maximum	parasite	killing	rates	for	different	antimalarial	drugs.	
	
Drug	half‐life	values	were	obtained	from	a	2001	WHO	Report	on	antimalarial	drug	use	[47]	and	several	
other	sources	(shown	in	the	table	below).	

	
Drug	 Half‐life	(t*)

Chloroquine	 10	days
Amodiaquine	 9	(7‐12)	days

[48]	
Sulfadoxine	 8days	
Pyrimethamine	 4	days
Proguanil	 16	hrs
Quinine,	quinidine	 10‐12	hrs
Mefloquine	 10‐40	days
Halofantrine	 1‐6	days
Artemisinin	derivatives	 4‐11	hrs	(DHA:	11‐12	hrs)
Lumefantrine	 3‐6	days	[49]
Piperaquine	 33	days	[50]

	
Table	S6:	Half‐lives	of	antimalarial	drugs.	
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To	find	specific	values	of	n	and	EC50	for	a	particular	drug	or	drug	combinations,	we	fixed	the	drug	half‐
life	and	 	value	which	are	known,	and	we	adjusted	n	(ranging	from	10	to	25),	EC50	(ranging	from	0.4	
–	0.6),	and	the	standard	deviation	of	the	initial	drug	concentration	until	the	PK/PD	profile	of	that	drug	or	
combination	 corresponded	 to	 the	 treatment	 efficacy	 measured	 from	 clinical	 trials.	 	 For	 example,	 for	
artemether‐lumefantrine,	we	set	a	half‐life	of	zero	days	(i.e.	drug	is	completely	out	of	the	system	on	the	
following	day),	n=25,	EC50=0.6,	pmax=0.999	[46]	for	artemether,	and	a	half‐life	=	4.5	days,	n=21,	EC50=0.6,	
pmax=0.99	for	lumefantrine.		This	corresponded	to	a	treatment	efficacy	of	94.9%.	
	
	
10	 Model	of	Immunity	and	Symptoms	
	
Using	M	 as	 the	 variable	 describing	 the	 general	 immune	 level	 (0	 <	M	 <	 1),	 the	 equation	 for	 immune	
acquisition	while	a	host	maintains	a	blood‐stage	infection	is		
	

1 1 	 ∙ ,	
	
where	the	rate	of	immune	acquisition	(a2)	increases	with	age.	We	model	this	age	dependency	by	allowing	
the	rate	a2	to	increase	by	1%	every	year	for	hosts	over	the	age	of	ten.		For	hosts	under	the	age	of	ten,	we	
use	 a	 convex	 function	 to	 describe	 the	 slower	 immune	 acquisition	 observed	 in	 children.	 	 For	 children	
under	ten	(1	<	a	<	10),	the	age‐specific	immunity	acquisition	rate	is	
	

10⁄ 	 1.01 	0.00125	,		
	
where	a	is	treated	as	an	integer	and	κ	determines	the	convexity	of	the	function	(this	is	fit	from	figures	S3	
and	 S4	 below).	 	 Individuals	 younger	 than	 six	 months	 have	 maternal	 immunity	 (see	 below)	 with	 no	
immune	 acquisition;	 individuals	 between	 6	 and	 12	 months	 no	 longer	 have	 maternal	 immunity	 and	
acquire	 immunity	 when	 infected	 at	 a	 rate	 a2	 that	 is	 half	 as	 fast	 as	 the	 rate	 for	 one‐year	 olds.	 	 The	
parameter	κ	 sets	 the	 convexity	 of	 age‐specific	 immune	 acquisition	 –	 for	 low	κ	the	 immune‐acquisition	
rate	of	children	quickly	reaches	the	normal	level	observed	in	adults,	and	for	high	values	of	κ	children	will	
have	slow	immune	acquisition	rates	until	they	reach	an	age	of	nine	or	ten.		We	varied	κ	between	0.1	and	
5.0	to	determine	how	it	affected	rates	of	clinical	presentation,	and	in	our	simulations	we	use	κ	=	1.0.			
	
For	individuals	older	than	ten,	the	immune	acquisition	rate	is	
	

1.01 	 	0.0013809	.		
	
Using	these	parameters,	a	naïve	ten‐year	old	child	would	reach	a	state	of	80%	immunity	(M=0.8)	in	about	
three	years.	 	A	naïve	30‐year	old	adult	would	reach	this	state	after	about	2.5	years.	 	Assuming	κ=1.0,	a	
persistently	 infected	 two‐year	old	would	 reach	80%	 immunity	by	age	nine,	 and	a	persistently	 infected	
five‐year	old	would	reach	80%	immunity	by	age	ten.				
	
Immunity	wanes	according	to	the	equation	
	

	 	
	
where	a1	is	set	to	0.0025.		This	corresponds	to	90%	immune	loss	after	2.5	years	[15].		Newborns	are	given	
maternal	immunity	(M=1)	which	wanes	linearly	over	six	months	and	is	then	set	to	zero.	
		
The	level	of	immunity	M	determines	the	duration	of	parasitaemia	(see	section	4)	and	the	probability	that	
a	 new	 infectious	 bite	 leads	 to	 symptomatic/clinical	 malaria.	 	 Our	 model	 most	 closely	 resembles	 the	
immunity	 model	 in	 Filipe	 et	 al.	 [15],	 which	 describes	 two	 types	 of	 immunity	 in	 individuals	 that	 are	
acquired	and	lost	at	different	rates.		In	our	model,	there	is	a	single	immunity	variable	but	this	variable	M	
determines	two	clinical	phenotypes	(probability	of	developing	symptoms	and	rate	of	parasite	clearance)	
that	are	acquired	and	lost	at	different	rates	as	they	are	non‐linear	functions	of	M.	
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Note	 that	 the	 behavior	 and	 structure	 of	 our	 immunity	model	will	 not	 exactly	mirror	 that	 of	 the	 2007	
Filipe	model,	as	 their	model	 is	 compartmental	and	 immunity	 is	modeled	as	a	population‐level	variable.		
For	 example,	 in	 our	 model	 a	 naïve	 individual	 can	 become	 infected	 and	 acquire	 a	 higher	 degree	 of	
immunity,	associated	with	faster	clearance,	over	the	6‐month	duration	that	he/she	is	clearing	parasites;	
but	 in	a	compartmental	model	with	a	population‐level	 immunity	variable	this	host	would	remain	naïve	
and	a	slow‐clearer	as	long	as	the	EIR	and	prevalence	in	the	population	remained	low.	
	
The	probability	of	progression	to	symptoms,	as	a	function	of	M,	is	modeled	as	
	

0.99
1 mid⁄

	

	
The	 parameter	 z	 describes	 the	 relationship	 between	 the	 level	 of	 immunity	 and	 the	 likelihood	 of	
developing	symptoms,	and	z	is	varied	between	2.0	and	8.0	to	determine	its	effects	on	patterns	of	clinical	
malaria;	we	set	Mmid	to	0.4	as	in	the	Filipe	paper	[15].	

	
Figure	S1:	The	y‐axis	shows	a	child’s	relative	immune	acquisition	rate	when	compared	to	a	ten‐year	old.		
Ten	different	lines	are	drawn	for	different	values	of	the	κ	parameter	ranging	from	0.1	to	5.0.	

	
Figure	 S2:	 The	 probability	 of	 progressing	 to	 clinical	 disease	 after	 in	 infectious	 bite,	 based	 on	 host’s	
immune	level	and	the	parameter	z.	
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11	 Incidence	of	Clinical	Episodes	by	Age	
	
Because	 there	 is	 no	 single	measure	 of	 immunity,	 and	 because	 some	 of	 the	 unknown	parameters	 from	
section	 8	 (a1,	 z,	 and	 κ)	 are	 impossible	 to	measure	 directly,	we	 perform	a	model	 validation	 exercise	 to	
determine	 if	 the	 age‐stratified	 annual	 incidence	 of	 clinical	 episodes	 in	 the	 simulation	matches	what	 is	
observed	in	the	field.			
	
If	 immune	 acquisition	 is	 rapid	 and	 if	 immunity	 has	 a	 strong	 effect	 on	 protecting	 individuals	 from	
severity/symptoms,	 then	 the	 age	 distribution	 of	 clinical	 cases	 should	 have	 a	 spike	 in	 the	 younger	 age	
groups	 with	 a	 rapid	 drop	 off	 as	 age	 increases.	 	 If	 immune	 acquisition	 is	 slow	 with	 weak	 effects	 of	
symptoms	prevention,	the	age‐distribution	of	clinical	cases	would	look	flat	in	low‐transmission	areas	and	
nearly‐flat	 (slowly	 decreasing	 with	 age)	 in	 higher	 transmission	 areas.	 	 Essentially,	 as	 EIR	 increases	
children	acquire	immunity	more	quickly,	and	a	larger	fraction	of	clinical	episodes	should	be	observed	in	
the	younger	age	classes.			
	
We	use	eight	sites	(from	five	publications)	that	report	incidence	patterns	of	clinical	episodes	by	age	for	
varying	levels	of	EIR.		The	table	below	shows	the	annual	incidence	of	clinical	malaria	episodes	for	2‐year	
olds,	10‐year	olds,	and	17‐year	olds	for	these	eight	sites.		These	age	groups	were	chosen	for	convenience	
based	on	the	available	data.	 	The	numbers	in	the	table	are	approximations	as	it	is	only	necessary	to	see	
roughly	how	these	numbers	change	relative	to	one	another.	
	
	

Clinical	Episodes	Per	Year	
Age	

Study	Reference	 EIR	 2	 10	 17	
Mwangi	et	al[16]	 10	 1.60	 0.50	 0.35	
Saute	et	al	[17]	 18	 0.42	 0.13	 no	data	
Smith	et	al	[20]	 20	 2.20	 2.80	 1.00	
Ghani	et	al	[18]	 30	 2.10	 2.70	 1.20	
Mwangi	et	al	[16]	 37.5	 1.55	 0.30	 0.25	
Guinovart	et	al[19]	 38	 0.87	 0.28	 no	data	
Ghani	et	al	[18]	 200	 5.00	 0.60	 0.30	
Smith	et	al		[20]	 200	 5.00	 0.50	 0.20	
	
Table	S7.	EIR	and	clinical	episodes/year	by	for	ages	2,	10,	and	17,	extracted	from	8	referenced	studies.	
	
Figures	 S3	 and	 S4	 show	 the	 ratio,	 from	 the	 table	 above,	 of	 clinical	 episodes	 in	 2‐year	 olds	 to	 clinical	
episodes	in	10‐year	olds.			These	data	are	compared	to	our	simulation	output.	
	
Simulation	results	show	that	the	ratio	of	clinical	episodes	in	age‐group	2	to	age‐group	10	has	a	positive	
log‐linear	relationship	with	EIR.		The	combination	κ	=	1	and	z	=	4	was	the	closest	match	to	the	data	points	
shown	 in	 the	 last	 panel	 of	 Figures	 S3	 and	 S4,	 and	we	 fix	κ	 =	 1	 and	 z	 =	 4	 in	 our	 simulations.	 	We	also	
verified	 that	 the	EIR‐prevalence	 relationship	 (section	13)	 and	EIR‐multiplicity	 of	 infection	 relationship	
(section	15)	were	not	sensitive	to	the	values	of	z	and	κ.	
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Figure	S3:	 The	 y‐axis	 shows	 the	 ratio	 of	 the	 number	 of	 annual	 clinical	 episodes	 in	 2‐year	 olds	 to	 the	
number	in	10‐year	olds.	 	Ten	simulations	were	done	for	each	combination	of	κ	 (different	panels)	and	z	
(different	 colors).	 The	 last	 panel	 shows	 the	 data	 from	 Table	 S7.	 In	 these	 simulations	 the	 treatment	
coverage	was	f	=	0.0.			
	

	
Figure	S4:	 The	 y‐axis	 shows	 the	 ratio	 of	 the	 number	 of	 annual	 clinical	 episodes	 in	 2‐year	 olds	 to	 the	
number	in	10‐year	olds.	 	Ten	simulations	were	done	for	each	combination	of	κ	 (different	panels)	and	z	
(different	 colors).	 The	 last	 panel	 shows	 the	 data	 from	 Table	 S7.	 In	 these	 simulations	 the	 treatment	
coverage	was	f	=	0.5	with	a	drug	with	a	7‐day	half‐life.	
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After	choosing	a	particular	immune	acquisition	behavior	for	our	model	(κ	=	1	and	z	=	4),	we	test	whether	
the	model	reproduces	 the	expected	age‐specific	clinical	pattern	under	different	transmission	scenarios.		
The	 burden	 of	 clinical	 disease	 should	 shift	 from	 the	 older	 age‐group	 to	 the	 younger	 age‐groups	 as	
transmission	 rate	 increases,	 and	 this	 is	 indeed	what	we	 observe	 in	 Figures	 S5	 (no	 treatment)	 and	 S6	
(50%	treatment	coverage).		
	
	

	
	
Figure	S5:	The	age‐specific	clinical	pattern	under	different	transmission	intensity	(EIR	increases	from	left	
to	right	and	from	top	to	bottom).	The	r‐values	in	the	top	right	corner	show	the	ratio	of	clinical	episodes	
ratio	 between	 two‐year	 olds	 and	 ten‐year	 olds	 in	 the	 simulation.	 Boxplots	 show	 medians	 and	
interquartile	ranges	from	100	simulations.		All	simulations	run	with	κ	=	1	and	z	=	4.	In	these	simulations	
the	treatment	coverage	was	f	=	0.0.			
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Figure	S6:	The	age‐specific	clinical	pattern	under	different	transmission	intensity	(EIR	increases	from	left	
to	right	and	from	top	to	bottom).	The	r‐values	in	the	top	right	corner	show	the	ratio	of	clinical	episodes	
ratio	 between	 two‐year	 olds	 and	 ten‐year	 olds	 in	 the	 simulation.	 Boxplots	 show	 medians	 and	
interquartile	ranges	from	100	simulations.		All	simulations	run	with	κ	=	1	and	z	=	4.	In	these	simulations	
the	treatment	coverage	was	f	=	0.5	with	a	drug	with	a	7‐day	halflife.	
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12	 Prevalence	of	Symptoms	and	Blood‐Slide	Prevalence	(φ	value)		
	
For	all	age	classes,	we	are	interested	in	the	ratio	of	symptomatic	cases	over	all	 infected	cases	(what	we	
call	the	“φ	value”)	as	this	will	give	us	a	measure	of	the	selection	pressure	on	the	parasite	population	as	
only	 symptomatic	 cases	are	 treated.	 	We	would	expect	 that	 for	φ	 decreases	 as	EIR	 increases,	 as	 in	 the	
model	 described	 by	 Boni	 et	 al	 [8].	 	 Very	 few	 data	 exist	 on	 this	 measurement.	 	 A	 recent	 review	 on	
asymptomatic	 parasitaemia	 and	 transmission	 showed	 that	φ	 ranges	 from	 0.40	 to	 0.01,	 as	 prevalence	
increases	from	1%	to	85%	[51].	 	Yekutiel	reports	φ	as	being	between	0.06	and	0.17	[52].	 	 In	two	other	
studies,	 it	 appears	 to	be	below	0.20	 [53,54].	 	Note	 that	 this	 ratio	 is	 very	 sensitive	 to	 the	denominator,	
which	is	very	sensitive	to	the	detection	method	used	in	each	study.			
	
In	 our	 simulations,	 the	 range	of	φ	does	 stay	below	0.20,	 and	φ	 decreases	with	EIR.	 	However,	we	also	
observe	a	complicated	interaction	between	φ	and	age.		As	shown	in	Figures	S7	and	S8	below,	the	φ‐value	
for	 younger	 age	 groups	 (<10)	 increases	 as	 EIR	 increases;	 the	 explanation	 for	 this	 is	 that	 in	 high	
transmission	areas,	children	are	bitten	more	often	and	experience	symptoms	more	often.	
	
	
	

	
Figure	 S7:	 400	 simulations	 were	 run	 to	 equilibrium	 at	 EIR	 levels	 ranging	 from	 0.6	 to	 550.	 In	 these	
simulations	treatment	coverage	was	set	to	f	=	0.0.	Immune	acquisition	parameters:	κ	=	1	and	z	=	4.			
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Figure	S8:	400	simulations	were	run	 to	equilibrium	at	EIR	 levels	ranging	 from	0.14	to	550.	Treatment	
coverage	was	 set	 to	 f	=	0.5,	with	 a	 single	7‐day	 half‐life	 drug	of	 approximately	 80%	efficacy.	 	 Immune	
acquisition	parameters:	κ	=	1	and	z	=	4.			
	
	
13	 Relationship	between	EIR	and	Malaria	Prevalence	
	
It	 is	 well	 known	 that	 the	 relationship	 between	 the	 entomological	 inoculation	 rate	 (EIR)	 and	 malaria	
prevalence	(PR)	should	be	non‐linear,	as	prevalence	will	saturate	close	to	100%	as	EIR	increases.		Beier	et	
al	(1999)	reviewed	data	from	31	sites	in	Africa	and	suggested	a	linear	relationship	between	log(EIR)	and	
prevalence	(their	Figure	1)	[55].	Similarly,	Hay	et	al	[56]	analyzed	data	from	22	countries	across	Africa	
between	1980	and	2004	and	also	found	the	log‐linear	relationship	between	EIR	and	PR.		Figures	S9	and	
S10	show	this	relationship	for	our	model.	 	Saturation	at	high	EIR	is	seen	as	expected,	and	a	general	log‐
linear	relationship	(bottom	panel)	is	seen	between	EIR	and	prevalence.	
	
As	 a	 second	 validation,	 we	 consider	 an	 EIR‐PR	 relationship,	 proposed	 by	 Smith	 et	 al	 (2005),	 which	
includes	biting	rate	heterogeneity	[3].		The	model:	
	

	1 1 		

	
where	ε	is	EIR,	b	is	the	probability	that	an	infectious	bite	results	in	an	infection,	r	is	the	host’s	clearance	
rate,	and	1/k	is	the	variance	of	a	unit‐mean	gamma	distribution	describing	heterogeneity	in	biting	rates.		
This	model	fit	the	data	[56]	better	than	five	other	models	they	proposed.			
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Figure	S9:	 	Model	output	 shown	 in	blue	circles.	 	Relationship	between	EIR	and	blood	slide	prevalence	
shown	on	linear	scale	(top)	and	log	scale	(bottom).	The	model	was	run	with	Γ‐distributed	relative	biting	
rate	with	a	coefficient	of	variation	equal	to	2.0.	Treatment	coverage	is	f	=	0.0.		The	green	crosses	represent	
the	fitted	data	from	the	Smith	et	al	model	with	b/r	=	0.0194,	1/k	=	0.447	[3].		

	
Figure	S10:	 	Model	output	shown	in	blue	circles.	 	Relationship	between	EIR	and	blood	slide	prevalence	
shown	on	linear	scale	(top)	and	log	scale	(bottom).	The	model	was	run	with	Γ‐distributed	relative	biting	
rate	with	a	coefficient	of	variation	equal	to	2.0.		Treatment	coverage	is	f	=	0.5	with	a	single	7‐day	half‐life	
drug	 of	 approximately	 80%	 efficacy.	 	 The	 green	 crosses	 represent	 the	 fitted	 data	 from	 the	 Smith	 et	 al	
model	with	b/r	=	0.0194,	1/k	=	0.447	[3].		
	



Supplementary	Appendix	for	Nguyen,	Olliaro,	Dondorp	et	al.,	Lancet	Global	Health,	2015	

	
	

Page	22	of	43	

	

14	 Prevalence	by	Age	
	
As	discussed	in	previous	sections,	it	is	believed	that	immunity	is	acquired	slowly	in	the	2‐10	age	group,	
with	individuals	over	the	age	of	ten	acquiring	immunity	(as	a	result	of	parasitaemia)	at	approximately	the	
same	 rate.	 	 A	 result	 of	 this	 assumption	 is	 that	 older	 age	 groups	 should	 have	 faster	 clearance	 rate	 and	
lower	 prevalence	 compared	 to	 younger	 age	 groups,	 as	 is	 observed	 in	 the	 field	 [11].	 A	 decrease	 in	
transmission	or	prevalence	may	lead	to	a	shift	in	peak	risk	of	malaria	infection	to	older	age	groups	[57–
59].		Age‐specific	prevalence	data,	summarized	by	Smith	et	al	[60],	show	the	shift	in	peak	prevalence	from	
older	age	groups	to	younger	age	groups	as	transmission	increases.	In	a	hypoendemic	area,	the	prevalence	
appeared	to	be	distributed	equally	across	all	the	age	groups.		Our	model	exhibits	the	expected	age‐specific	
prevalence	patterns	as	shown	in	Figures	S11	and	S12	below.	
	

	
Figure	S11:	The	graphs	shows	age‐specific	blood‐slide	prevalence	for	different	transmission	intensities;	
κ	=	1,	z	=	4,	treatment	coverage	f	=	0.	
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Figure	S12:	The	graphs	shows	age‐specific	blood‐slide	prevalence	for	different	transmission	intensities;	
κ	=	1,	z	=	4,	treated	coverage	f	=	0.5,	with	a	single	7‐day	half‐life	drug	of	approximately	80%	efficacy.	
	
	
	
	
15	 Multiplicity	of	Infection	
	
The	multiplicity	of	infection	(MOI)	data	from	Owusu‐Agyei	et	al	[61]	is	used	to	validate	the	distribution	of	
the	 number	 of	 parasite	 clones	 within	 each	 host.	 The	 EIR	 in	 the	 Owusu‐Agyei	 study	 is	 estimated	 at	
approximately	 300	 bites	 per	 person	 year.	 	 We	 generate	 two	 model	 scenarios	 with	 this	 high	 level	 of	
transmission	 (Figures	 S13	 and	 S14)	 and	 plot	 the	multiplicity	 of	 infection	 (MOI)	 distribution	 from	 the	
equilibria	reached	 in	these	simulations,	alongside	the	data	 from	the	Owuse‐Agyei	paper	(green	squares	
below).	
	
The	shape	of	MOI	distribution	depends	on	the	transmission	intensity.		In	a	low‐transmission	setting,	most	
infected	individuals	have	a	single	parasite	clone	present	in	their	blood,	while	in	high‐transmission	areas	
the	majority	of	individuals	have	multiple	clones	present.	
	
Arnot	 [62]	 showed	a	 relationship	between	EIR	and	 the	average	number	of	malaria	parasite	 clones	per	
infection	with	a	positive	linear	association	on	a	log‐log	scale.	Our	model	output	shows	a	similar	pattern	
(not	shown	here),	but	there	are	simply	too	few	data	points	from	the	field	on	the	EIR‐MOI	relationship	to	
determine	what	the	null	shape	of	this	distribution	should	be.	
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Figure	S13:	Distribution	 of	 number	 of	 clones	per	 infection.	 The	 bar	 graph	 shows	 the	 output	 from	our	
simulation	with	EIR	=	290	while	the	dashed	line	(green	squares)	represents	the	data	from	Owusy‐Agyei’s	
study	with	EIR	approximately	300	(κ	=	1,	z	=	4,	f	=	0.0).	
	

	
Figure	S14:	Distribution	 of	 number	 of	 clones	per	 infection.	 The	 bar	 graph	 shows	 the	 output	 from	our	
simulation	with	EIR	=	335	while	the	dashed	line	(green	squares)	represents	the	data	from	Owusy‐Agyei’s	
study	with	EIR	approximately	300	(κ	=	1,	z	=	4,	f	=	0.5,	with	a	single	7‐day	half‐life	drug	of	approximately	
80%	efficacy).	
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16	 Biting‐Rate	Heterogeneity	and	Prevalence		
	
Heterogeneity	 in	 transmission	was	modeled	by	assigning	a	 relative	biting	 level	 (bi)	 to	each	host,	which	
describes	 that	 host’s	 relative	 attractiveness	 to	 mosquitoes.	 	 The	 higher	 an	 individual’s	 relative	 biting	
level,	 the	more	frequently	mosquitoes	will	bite	that	individual.	 	A	convenient	and	classic	 formulation	of	
transmission	heterogeneity	is	the	“20/80	rule”	[63]	which	states	that	in	many	epidemiological	scenarios	
with	 transmission	 heterogeneity	 20%	 of	 the	 population	 is	 responsible	 for	 approximately	 80%	 of	
transmission.			
	
The	relative	biting	levels	(bi)	in	our	simulation	follow	a	gamma	distribution.	In	the	Smith	et	al	paper	[3],	
the	 inferred	 coefficient	 of	 variation	 (mean	 1,	 variance	 4.2)	 is	 approximately	 2.05,	 and	 we	 set	 this	
coefficient	of	variation	as	our	default.		Sensitivity	analyses	(section	17)	are	conducted	with	coefficients	of	
variation	set	to	1.0	and	2.0.	
	
The	effect	of	the	standard	deviation	on	the	20/80	rule	is	shown	in	the	graphs	below.	
	
	

	
Figure	S15:	The	sensitivities	of	four	key	model	relationships	to	the	standard	deviation	in	relative	biting	
rate.		Treatment	coverage	f	is	set	to	0.0.	
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Figure	S16:	The	sensitivities	of	four	key	model	relationships	to	the	standard	deviation	in	relative	biting	
rate.		Treatment	coverage	f	is	set	to	0.5.	
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17	 General	Sensitivity	Analysis	
	
To	perform	a	sensitivity	analysis	 to	certain	epidemiological,	pharmacological,	evolutionary	parts	of	our	
model,	we	varied	the	parameters/scenarios	below.	
	
First	we	varied	the	transmission	setting	by	varying	the	transmission	coefficient	β	(four	different	values)	
as	well	as	the	coefficient	of	variation	in	the	biting	rate	(two	different	values).		The	equilibrium	behaviors	
of	these	eight	scenarios	are	described	below.		In	these	test	scenarios,	we	assume	that	50%	of	clinical	cases	
are	treated	with	a	drug	of	80%	efficacy	and	a	7‐day	half‐life.		
	
Transmission	
Coefficient	(β)	

Coefficient	of	Variation	in	
Biting	Rate	

Prevalence	at	
Equilibrium	

Annual	EIR	at	
Equilibrium	

0.50	 2.0 18.7% 18.0	
0.50	 1.0 23.1% 20.3	
0.25	 2.0 9.17% 6.20	
0.25	 1.0 9.20% 5.43	
0.20	 2.0 6.56% 4.07	
0.20	 1.0 4.88% 2.36	
0.14	 2.0 2.70% 1.33	
0.14	 1.0 0.01% <0.01	

	
Because	the	last	scenario	in	the	table	above	resulted	in	frequent	extinction,	this	transmission	setting	was	
not	used	in	the	sensitivity	analysis.		Only	the	first	seven	transmission	settings	were	used.		Note	that	in	the	
simulations,	 a	 different	 EIR	 will	 be	 observed	 as	 ACTs	 are	 used	 in	 our	 simulated	 scenarios	 and	 the	
equilibrium	 prevalence	 and	 EIR	 are	 lower	 than	 in	 the	 table	 reported	 above.	 	 The	 table	 above	 can	 be	
thought	of	as	the	“pre‐ACT	era”	transmission	setting.	
	
The	treatment	coverage	was	varied	across	the	five	values	f	=	0.5,	0.6,	0.7,	0.8,	and	0.9.	
	
The	cost	of	resistance	was	varied	across	the	three	values	cR	=	0.001,	0.005,	and	0.010.	
	
To	vary	the	effect	of	the	drug	concentration	in	the	probability	of	drug‐resistance	evolution	we	varied	the	
parameter	k	(see	“Drug	Resistance	Evolution”	heading	in	section	1).	 	Three	values	are	used,	k	=	0.5,	2.0,	
and	4.0.	
	
The	drug	half‐lives	were	varied	to	test	four	different	scenarios:	(a)	all	three	partner	drugs	have	a	half‐life	
of	4.5	days,	(b)	all	three	partner	drugs	have	a	half‐life	of	9	days,	(c)	all	three	partner	drugs	have	a	half‐life	
of	 28	 days,	 (d)	 the	 three	 partner	 drugs	 have	 three	 different	 half‐lives	 of	 4.5	 days	 (corresponding	 to	
lumefantrine),	9	days	(corresponding	to	amodiaquine),	and	28	days	(corresponding	to	piperaquine).	
	
In	each	of	the	above	scenarios,	it	was	assumed	that	three	ACTs	were	available,	and	three	strategies	were	
evaluated:		MFT,	5‐Year	Cycling,	and	Sequential	Deployment.	
	
Thus,	a	total	of	3780	scenarios	are	simulated.		This	requires	approximately	4‐5	days	of	computation	time	
on	a	modern	70‐core	 computer	 cluster.	 	A	 total	 of	 five	 complete	 sensitivity	 analyses	were	 run	(18,900	
simulations),	and	the	results	are	summarized	below.		
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Figure	S17.	 	The	boxplots	 show	 the	percent	 reduction	 in	NTF	achieved	by	using	 an	MFT	policy,	when	
compared	 to	 sequential	 deployment	 (orange)	 and	 five‐year	 cycling	 (red),	 across	 all	 parameter	
combinations	 in	 the	 sensitivity	 analysis.	 The	 boxes	 show	 interquartile	 ranges,	 stratified	 by	 different	
transmission	 intensities.	 	 For	 each	 parameter	 combination	 in	 the	 comparison,	 only	 scenarios	 with	 no	
extinction	(NTF>0.25)	are	included	in	the	calculation	of	interquartile	ranges.		The	numbers	at	the	top	and	
bottom	of	each	boxplot	show	the	number	of	comparisons	for	which	one	strategy	caused	extinction	but	the	
comparator	 strategy	 did	 not.	 	 The	 green	 numbers	 indicate	 the	 number	 of	 simulations	 for	which	MFT	
resulted	in	extinction	but	the	cycling/sequential	strategy	did	not,	while	the	red	and	orange	numbers	show	
the	number	of	simulations	when	the	cycling	(red)	or	sequential	(orange)	strategies	reached	extinction	but	
MFT	did	not.		There	are	fewer	extinction	under	EIR=4.07	than	EIR=5.43,	because	the	former	is	associated	
with	 a	 higher	 coefficient	 of	 variation	 in	 the	 mosquito	 biting	 rate.	 	 Across	 the	 different	 transmission	
settings	 and	 counting	 all	 simulations	 (including	 those	 that	 did	 and	 did	 not	 lead	 to	 extinction)	 NTF	
numbers	are	lower	for	MFT	than	other	strategies	(all	p	<	.002;	Mann‐Whitney).	
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Figure	S18.	 	The	boxplots	 show	 the	percent	 reduction	 in	NTF	achieved	by	using	 an	MFT	policy,	when	
compared	 to	 sequential	 deployment	 (orange)	 and	 five‐year	 cycling	 (red),	 across	 all	 parameter	
combinations	in	the	sensitivity	analysis.	The	boxes	show	interquartile	ranges,	stratified	by	different	costs	
of	 resistance.	 	 For	 each	 parameter	 combination	 in	 the	 comparison,	 only	 scenarios	 with	 no	 extinction	
(NTF>0.25)	are	included	in	the	calculation	of	interquartile	ranges.		The	numbers	at	the	top	and	bottom	of	
each	 boxplot	 show	 the	 number	 of	 comparisons	 for	 which	 one	 strategy	 caused	 extinction	 but	 the	
comparator	 strategy	 did	 not.	 	 The	 green	 numbers	 indicate	 the	 number	 of	 simulations	 for	which	MFT	
resulted	in	extinction	but	the	cycling/sequential	strategy	did	not,	while	the	red	and	orange	numbers	show	
the	number	of	simulations	when	the	cycling	(red)	or	sequential	(orange)	strategies	reached	extinction	but	
MFT	did	not.		For	the	three	different	costs	of	resistance,	and	using	all	simulations	(including	those	that	did	
and	did	not	lead	to	extinction),	NTF	numbers	are	lower	for	MFT	than	other	strategies	(all	p	<	10‐6;	Mann‐
Whitney).	
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Figure	 S19.	 	 As	 figures	 S17	 and	 S18,	 stratified	 by	 EIR	 and	 partner	 drug	 half‐life.	 For	 the	 higher	
transmission	scenarios	(top	five	rows),	NTF	numbers	are	lower	for	MFT	than	other	strategies	(p	<	10‐4;	
Mann‐Whitney,	 for	 each	 boxplot).	 	 For	 the	 bottom	 two	 rows,	 the	 main	 qualitative	 feature	 of	 these	
comparisons	 is	 the	 number	 of	 total	 extinctions	 in	 the	 simulations	 (approximately	 50%)	 and	 not	 a	
comparison	of	medians	or	ranks.		MFT	caused	more	extinctions	than	Cycling	or	Sequential	Deployment	in	
all	of	 these	comparisons;	 for	simulations	that	did	not	result	 in	extinction	the	NTF	values	 for	MFT	were	
lower	(p	<	.002;	Mann‐Whitney,	for	each	boxplot).	 	



Supplementary	Appendix	for	Nguyen,	Olliaro,	Dondorp	et	al.,	Lancet	Global	Health,	2015	

	
	

Page	31	of	43	

	

18	 Additional	Figures	for	Specific	Sensitivity	Analyses	
	
Varying	 the	 parameter	 k	 which	 describes	 the	 relationship	 between	 drug	 concentration	 and	
mutation	probability.	
	
	

	
	
Figure	 S20.	 As	 Figure	 2	 of	 the	 main	 text,	 but	 with	 k	 =	 0.5;	 i.e.	 the	 probability	 of	 a	 drug‐resistance	
mutation	 is	 proportional	 to	 drug	 concentration.	 	 Fifty	 simulations	 are	 shown	 for	 each	 strategy,	 drug	
coverage	 (f),	 and	 cost	 of	 resistance	 (cR)	 combination.	 	 NTF	 values	 exhibited	 a	 bimodal	 distribution	
corresponding	 to	 simulation	 runs	 that	 did	 or	 did	 not	 result	 in	 extinction.	 Box	 plots	 show	 NTF	
interquartile	ranges	for	simulations	with	no	extinctions.	The	numbers	on	the	left‐hand	side	of	each	plot	
show	 the	 percentage	 of	 simulations	 that	 resulted	 in	 extinction.	Mutations	 accumulate	more	 slowly	 for	
k=0.5	(this	 figure)	 than	 for	k=4.0	(Figure	2,	main	text),	and	 for	 this	reason	extinction	is	more	 likely	 for	
k=0.5	when	treatment	coverage	is	very	high.	 	For	f	=	0.5	and	f	=	0.6,	NTF	values	were	lower	under	MFT	
(p=0.02;	except	for	comparison	a).	
	
	
	
	
	

	
Figure	 S21.	 As	 Figure	 3	 of	 the	 main	 text,	 but	 with	 k	 =	 0.5;	 i.e.	 the	 probability	 of	 a	 drug‐resistance	
mutation	 is	 proportional	 to	 drug	 concentration.	 	 Fifty	 simulations	 are	 shown	 for	 each	 strategy,	 drug	
coverage	(f),	and	cost	of	resistance	(cR)	combination.		AMU	values	did	not	exhibit	a	bimodal	distribution,	
and	interquartile	AMU	ranges	are	shown	as	boxplots	for	all	fifty	simulations.		For	f	≥	0.7,	AMU	values	were	
lower	under	MFT	(p	<	0.003).		For	f	≤	0.6,	AMU	values	were	lower	under	MFT	(p	<	0.01,	except	for	those	
labeled	a);	note	that	in	these	three	cases	it	was	only	the	25th	percentiles	were	not	statistically	different.	
	
	
	
	
	 	



Supplementary	Appendix	for	Nguyen,	Olliaro,	Dondorp	et	al.,	Lancet	Global	Health,	2015	

	
	

Page	32	of	43	

	

	
Varying	the	transmission	setting.	
	
	

	
	
	
Figure	S22.		As	Figure	2	of	the	main	text	but	in	a	moderate	transmission	setting	corresponding	to	the	
fifth	scenario	listed	in	the	table	on	page	27.		Annual	EIR	is	4.07.		All	p	<	10‐10	when	comparing	MFT	to	
other	strategies.		Each	boxplot	corresponds	to	100	simulations.	
	
	

	
	
	
Figure	S23.		As	Figure	2	of	the	main	text	but	in	a	high	transmission	setting	corresponding	to	the	first	
scenario	listed	in	the	table	on	page	27.		Annual	EIR	is	18.0.		All	p	<	10‐11	when	comparing	MFT	to	other	
strategies.		Each	boxplot	corresponds	to	100	simulations.	
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Varying	the	distribution	of	therapies	in	an	MFT	strategy.	
	

	
	
Figure	S24.	As	 Figure	 2	 of	 the	main	 text,	 but	 two	 new	 strategies	 are	 compared	 to	MFT:	MFT235	 and	
MFT532.		In	MFT235	the	proportion	of	patients	that	are	treated	with	AL,	ASAQ,	and	DHA‐PPQ	are	20%,	
30%,	and	50%,	respectively.	 	In	MFT532	the	proportion	of	patients	that	are	treated	with	AL,	ASAQ,	and	
DHA‐PPQ	 are	 50%,	 30%,	 and	 20%,	 respectively.	 	 These	 simulations	 were	 run	 in	 a	 low‐transmission	
scenario,	 and	 it	 does	 not	 appear	 that	 altering	 the	 distribution	 of	 therapies	 according	 to	 half‐life	 has	 a	
consistent	 effect	 on	 patterns	 of	 resistance	 evolution.	 One	 hundred	 simulations	 are	 shown	 for	 each	
scenario.		For	f	=	0.5	and	f	=	0.6,	MFT	has	a	lower	NTF	distribution	(p	<	.004,	except	for	the	comparisons	
labeled	a),	but	the	magnitudes	of	the	differences	are	small.	For	f	≥	0.7,	the	number	of	extinctions	is	quite	
high	and	a	statistical	comparison	of	NTF	ranges	is	not	done.		Mutation	rate	is	highest	at	intermediate	drug	
concentrations	(k	=	4).	
	
	
	

	
	
Figure	S25.	 	As	Figure	S24,	but	the	mutation	rate	is	proportional	to	drug	concentration	(k	=	0.5).	 	Fifty	
simulations	are	shown	for	each	scenario,	but	note	the	small	number	of	simulations	plotted	for	f	≥	0.7	as	
the	majority	of	simulations	in	these	scenarios	reached	extinction.		For	f	=	0.5	and	f	=	0.6,	MFT	has	a	lower	
NTF	distribution	(p	<	.01,	except	for	the	comparisons	labeled	a),	but	the	magnitudes	of	the	differences	are	
small.	
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Variation	in	the	surveillance	window	that	determines	the	10%	treatment	threshold.	
	
	

	
	
Figure	S26.		Epidemiological	scenario	from	Figure	2.		Sensitivity	analysis	for	the	sequential	deployment	
strategy	aimed	at	investigating	if	the	method	of	computing	the	10%	treatment‐failure	threshold	will	have	
a	 large	 effect	 on	 the	 strategy’s	 long‐term	 outcomes.	 	 Normally,	 we	 simulate	 a	 sequential	 deployment	
strategy	by	assuming	that	the	treatment	failure	rate	is	computed	by	analyzing	the	successful	and	failing	
treatments	over	the	past	60	days	(“ws60”).		Here,	we	look	at	the	differences	if	the	past	120	days	or	past	
180	days	are	used.		For	0.5	≤	f	≤	0.7,	there	are	no	statistical	differences	when	“ws60”	is	compared	to	either	
“ws120”	 or	 “ws180”	 (all	 p	 ≥	 0.05)	 except	 for	 the	 comparison	 (a)	 where	 the	 25th	quantiles	 of	 these	
distributions	are	statistically	different	at	p	=	0.022.		For	f		≥	0.8,	the	majority	of	these	simulations	resulted	
in	extinction	 (numbers	plotted	 to	 the	 left	 hand	 side	of	 these	panels)	and	 statistical	 comparison	 among	
these	distributions	is	not	meaningful.		Each	boxplot	corresponds	to	100	model	simulations.	
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Robustness	of	the	biting	model	
	
	
	

	
	
Figure	S27.		Epidemiological	scenario	from	Figure	2	of	main	text.		Here,	the	frequency	with	which	a	host	
is	 bitten	 by	mosquitoes	 is	 associated	with	weight	 in	 kilograms.	 	 This	 relationship	 is	motivated	 by	 the	
findings	of	Port	 et	 al	 [5]	 and	 the	analysis	presented	 in	Smith	et	al	 [64].	 	Weight	 is	 taken	 to	be	directly	
proportional	to	likelihood	of	biting	and	age‐for‐weight	measures	are	taken	from	WHO	[65].		Each	boxplot	
corresponds	to	50	simulations,	and	for	f	≤	0.8	all	p	<	10‐3	when	comparing	MFT	to	other	strategies	except	
(a)	and	(b)	where	the	25th	percentiles	of	these	‘Seq	Depl’	NTF‐distributions	are	not	statistically	different	
from	MFT.		For	f	=	0.9,	statistical	comparisons	among	interquartile	ranges	were	not	done	as	the	majority	
behavior	in	these	simulations	was	extinction.	
	
	
	
	
	

	
	
Figure	 S28.	 	 Epidemiological	 scenario	 from	 Figure	 S22	 of	 this	 Supplementary	 Appendix.	 Here,	 the	
probability	of	an	infectious	bite	causing	an	infection	is	proportional	to	a	host’s	relative	level	of	immunity	
(which	normally	depends	on	age).		The	data	in	Hoffman	et	al	[35]	suggest	that	there	may	be	a	five‐fold	or	
six‐fold	 difference	 in	 this	 probability	 between	 children	 and	 adults	 (not	 accounting	 for	 size,	weight,	 or	
immunity),	 and	 in	 the	 comparisons	 presented	 in	 this	 figure	we	 let	 this	 infection	probability	 vary	 from	
0.04	to	0.16	according	 to	Prob	=	0.04	+	0.12×(1	–	 ImmuneLevel).	 	The	moderate	 transmission	scenario	
from	Figure	S22	was	chosen	for	this	comparison	so	that	there	would	be	more	variation	in	host	immunity	
in	the	population.		Each	boxplot	corresponds	to	50	simulations,	and	all	p	<	10‐5	when	comparing	MFT	to	
other	strategies.	
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Small	Population	Size	
	
	
	
	

	
Figure	S29.	As	Figure	2	of	the	main	text	(with	cost	of	resistance	fixed	at	cR	=	0.005),	and	population	size	is	
varied	here	to	see	if	there	are	any	unexpected	effects	at	small	population	size.		The	major	observed	effect	
is	 more	 frequent	 extinctions	 observed	 at	 small	 population	 sizes,	 which	 is	 expected.	 	 Each	 boxplot	
corresponds	to	100	simulations,	and	the	numbers	at	the	left	of	each	panel	show	what	percentage	of	those	
simulations	 reached	 extinction.	 	 For	 f	 =	 0.5	 and	 f	 =	 0.6,	 all	 p	 <	 10‐6	 when	 comparing	 MFT	 to	 other	
strategies.	 	 For	 f	 ≥	 0.7	 the	predominant	behavior	 is	 extinction,	 and	 in	all	 cases	MFT	 is	 associated	with	
more	frequent	extinction	events	than	either	cycling	strategy.	
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19	 Comparison	to	Results	in	Antao‐Hastings	(2012)	
	
In	a	2012	paper	in	Malaria	Journal,	Antao	and	Hastings	[66]	performed	comparisons	between	MFT	and	
Sequential	Deployment	strategies.		For	certain	parameter	combinations	(0.4	≤	f	≤	0.6;	MOI	=	2	or	4;	cR	=	
0.10),	 they	 observed	 that	 MFT	 strategies	 resulted	 in	 a	 quicker	 time	 to	 the	 10%‐treatment‐failure	
milestone	and	were	thus	associated	with	shorter	useful	therapeutic	lives	(UTL).			
	
In	 this	 section,	we	attempt	 to	recreate	 the	conditions	 that	 led	 to	 these	outcomes	 in	 the	Antao‐Hastings	
analysis.		However,	several	important	caveats	need	to	be	stated	and	some	differences	between	the	models	
need	 to	 be	 underlined.	 	 The	 differences	 between	 the	 model	 constructions	 are	 substantial,	 and	 the	
comparison	presented	in	this	section	is	approximate.	
	
(a)		The	Antao‐Hastings	model	(called	ogaraK)	does	not	explicitly	model	a	population	of	humans.		It	only	
tracks	 gene	 frequencies	 of	 malaria	 parasites	 (as	 in	 a	 traditional	 population	 genetics	 framework).		
Therefore,	 some	key	aspects	 of	malaria	epidemiology	 are	missing	 in	 this	model	and	are	not	 able	 to	be	
compared	to	our	model.		For	example,	malaria	prevalence	cannot	be	tracked	in	ogaraK,	and	as	resistance	
evolves	in	ogaraK	it	is	not	known	if	prevalence	increases	or	by	how	much;	hence,	we	cannot	compare	a	
prevalence	 trajectory	 from	our	model	 and	 the	Antao‐Hastings	model.	 	 Likewise,	 ogaraK	does	not	 track	
clinical/symptomatic	 cases,	 age‐structure	 of	 malaria	 cases,	 or	 MOI	 distribution,	 so	 these	 general	
epidemiological	measures	of	malaria	cannot	be	compared.	
	
(b)	 	UTLs	 can	be	 compared	between	 the	 two	models,	but	NTF	values	 cannot	be	compared,	 as	 a	purely	
population‐genetic	 model	 cannot	 track	 the	 total	 number	 of	 treatment	 failures	 in	 a	 single	 model	
simulation.		We	will	present	the	NTF	and	UTL	comparisons	from	our	model	below,	but	it	is	important	to	
remember	that	the	total	number	of	treatment	failures	is	the	more	appropriate	health	outcome	measure	
for	policy	comparison,	as	this	represents	the	number	of	individuals	that	will	receive	a	failing/ineffective	
therapy	during	a	fixed	time	period	(in	our	model,	20	years).	
	
(c)	 	OgaraK	uses	 a	 fixed	 “generation	 time”	of	 approximately	50	days,	meaning	 that	 the	model	assumes	
that	 it	 takes	 about	 50	 days	 for	 one	 malaria	 infection	 to	 generate	 a	 second	 malaria	 infection.	 	 The	
generation	time	in	our	model	is	variable	and	dependent	on	symptoms,	age,	parasitaemia,	biting	rate,	and	
current	 prevalence.	 The	 relationship	 between	 prevalence	 and	 generation	 time	 is	 especially	 important	
because	at	low	prevalence	the	generation	time	will	be	longer,	resulting	in	slower	evolution	in	general;	at	
high	prevalence,	mosquito	bites	are	more	common	and	the	generation	time	is	shorter,	resulting	in	a	faster	
process	of	positive	selection	or	negative	selection	if	either	of	these	is	occurring.	
	
(d)		OgaraK	fixes	its	MOI	distribution.	The	MOI	distribution	in	our	model	is	dependent	on	prevalence.		At	
high	 prevalence,	 individuals	 get	 bitten	more	 often	 by	 infectious	mosquitoes	 and	 the	 number	 of	 clonal	
parasite	populations	carried	by	each	 individual	will	 generally	be	higher.	 	The	ogaraK	simulations	were	
run	with	MOI	set	to	either	2	or	4	for	all	individuals.		Because	we	cannot	calibrate	our	model	so	that	each	
host	has	exactly	2	or	4	clonal	parasite	populations,	we	chose	prevalence	levels	where	the	mean	MOI	was	
equal	to	2	or	4.	
	
(e)	 	 There	 are	 other	 model	 differences	 that	 will	 affect	 the	 results.	 	 Our	 simulation	 has	 a	 model	 of	
immunity,	within‐host	parasitaemia,	immunity‐mediated	symptoms,	immunity‐mediated	parasitaemia,	a	
transmission	 cycle	 that	 depends	 on	 parasite	 density	 levels,	 pharmacokinetics,	 pharmacodynamics,	 and	
biting	rate	heterogeneity.	All	of	these	features	will	affect	the	epidemiology	and	evolution	in	the	simulation	
to	some	degree.	
	
First,	 we	 attempted	 to	 calibrate	 the	 transmission	 setting	 in	 our	model	 to	mimic	 the	MOI	 levels	 in	 the	
Antao‐Hastings	paper.		We	used	these	two	transmission	settings:	
	
	
	



Supplementary	Appendix	for	Nguyen,	Olliaro,	Dondorp	et	al.,	Lancet	Global	Health,	2015	

	
	

Page	38	of	43	

	

Transmission	
Coefficient	(β)	

Coefficient	of	
Variation	in	Biting	
Rate	

Prevalence	at	
Equilibrium	

Annual	EIR	at	
Equilibrium	

Mean	of	MOI	
distribution	

1.50	 2.0	 44.0% 94 2.12
8.00	 2.0	 83.8% 791 4.01

	
However,	after	running	these	at	f=0.6	and	cR=0.10,	we	could	not	compare	results	because,	in	our	model,	a	
60%	 coverage	 and	 a	 10%	 cost	 of	 resistance	 do	 not	 generate	 sufficient	 selection	 pressure	 for	 rapid	
resistance	evolution	(note	that	both	our	model	and	the	Antao‐Hastings	model	use	a	multiplicative	fitness	
model	for	cost	of	resistance	in	multi‐drug	resistant	genotypes).		Very	little	resistance	evolution	was	seen	
in	about	500	model	runs,	and	the	useful	therapeutic	lives	of	both	strategies	(MFT	and	Sequential)	were	
equal	to	20	years	for	a	20‐year	model	simulation.		This	was	not	a	consequence	of	the	mutation	rate	or	of	
the	introduction/non‐introduction	of	resistant	mutants	at	the	beginning	of	the	simulation	(we	tested	both	
hypotheses).	 This	 was	 simply	 a	 consequence	 of	 the	 resistant	 types	 experiencing	 a	 weak	 selective	
environment,	which	resulted	in	very	slow	resistance	evolution.	
	
Therefore,	 we	 set	 the	 cost	 of	 resistance	 to	 cR	 =	 0.025	 in	 the	 MOI=2	 scenario,	 and	 we	 set	 the	 cost	 of	
resistance	to	cR	=	0.010	in	the	MOI=4	scenario,	in	order	to	get	resistance	evolution	times	that	were	close	
to	 those	 seen	 in	 Figures	 1	 and	 3	 of	 the	 Antao‐Hastings	 paper.	 	 Below	 we	 present	 the	 comparisons	
between	an	MFT	strategy	and	a	Sequential	Deployment	strategy	under	these	conditions.	 	For	sequential	
deployment,	normally	the	drugs	are	deployed	as	AL	first,	then	AS‐AQ,	then	DHA‐PPQ,	so	that	shorter	half‐
life	 ACTs	 are	 used	 first	 to	minimize	 drug	 pressure.	 For	 these	 comparisons,	we	 also	 tested	 the	 inverse	
order	(“Seq	Depl	Inv”),	as	the	UTLs	were	quite	long	in	most	cases	and	using	the	long‐half	 life	drug	first	
sometimes	minimized	prevalence	and	NTF.		
	
For	MOI=2,	the	comparisons	between	MFT	and	Sequential	Deployment	were:	
	

	
	
	
Figure	S30:		Comparison	of	MFT	and	Sequential	Deployment	(one	hundred	simulations	for	each	strategy)	
under	the	Antao‐Hastings	scenario	of	MOI=2.		Cost	of	resistance	in	this	figure	is	cR	=	0.025.		Treatment	
coverage	is	f	=	0.6.		Drug‐resistance	mutations	are	more	likely	at	intermediate	concentrations	(k	=	4).		All	
p	<	10‐15	when	comparing	MFT	to	other	strategies.	
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Figure	S31:		Useful	therapeutic	lives	(UTLs)	of	drug	strategies	from	Figure	S30.		All	p	<	10‐15	when	
comparing	MFT	to	other	strategies.	
	
For	MOI=4,	the	comparisons	between	MFT	and	Sequential	Deployment	were:	
	

	
	
	
Figure	S32:		Comparison	of	MFT	and	Sequential	Deployment	(one	hundred	simulations	for	each	strategy)	
under	the	Antao‐Hastings	scenario	of	MOI=4.		Cost	of	resistance	in	this	figure	is	cR	=	0.010.		Treatment	
coverage	is	f	=	0.6.		Drug‐resistance	mutations	are	more	likely	at	intermediate	concentrations	(k	=	4).		All	
p	<	10‐15	when	comparing	MFT	to	other	strategies.	
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Figure	S33:		Useful	therapeutic	lives	(UTLs)	of	drug	strategies	from	Figure	S32.		All	p	<	10‐15	when	
comparing	MFT	to	other	strategies.	Drug	resistance	evolution	occurs	more	quickly	in	this	scenarios	than	
for	MOI=2	because	the	costs	of	resistance	are	different	for	the	two	figures.		No	resistance	evolution	was	
observed	in	the	MOI=4	scenario	when	cR	=	0.025.	
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