

Figure S1. Quality scores Illumina ("raw")

Distributional density of the Illumina PHRED scores per nucleotide (A/C/G/T) in the forward and reverse read mapping at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets). The probability density distribution is different for errors compared to "no error" (reference/SNV) in forward and/or reverse read direction.

Illumina PHRED scores per nucleotide (A/C/G/T) in the forward and reverse read mapping summarized for nineteen percentiles (5th,10th,...,95th) at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets). The cumulative distribution is different for errors compared to "no error" (reference/SNV) in forward and/or reverse read direction.

Figure S3. Quality scores recalibrated

Distributional density of the recalibrated PHRED scores per nucleotide (A/C/G/T) in the forward and reverse read mapping at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets). The probability density distribution is different for errors compared to "no error" (reference/SNV) in forward and reverse read direction.

Figure S4. Quality Quantile plot (recalibrated)

Recalibrated PHRED scores per nucleotide (A/C/G/T) in the forward and reverse read mapping summarized for nineteen percentiles (5th,10th,...,95th) at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets). The cumulative distribution is different for errors compared to "no error" (reference/SNV) in forward and reverse read direction.

Figure S5. Coverage of plasmids in FASTQ/1 training data

Five HIV-1 plasmids were sequenced with Illumina GAIIx in one lane. The coverage per plasmid derived from a total of 1,183,162 reads, with at least one nucleotide in the PR-RT region from nucleotide position 2253 to 3749, is shown.

Distribution of so-called *true* frequencies of 9,600 *in silico* SNVs (10 per sample). The 1,920 variants with *true* frequency equal to 100% (always present) at position 2259 and 2927 are not shown. On the y-axis in the histogram are the number of variants with the same *true* frequency sampled around the five chosen frequencies (0.5%, 1.5%, 5%, 30%, and 63%). The *true* frequencies on the x-axis are shown in log_{10} scale.

Figure S7. QQnorm

SNV position 2850

Normalized recalibrated PHRED scores per nucleotide (A/C/G/T) minimized over the read mapping direction (forward/reverse) and calculated for nineteen percentiles (5th,10th,...,95th) at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

SNV position 2850

error position 2923

Distance per nucleotide (A/C/G/T) in the range [0,1] maximized over the read mapping direction (forward/reverse) and calculated for nineteen percentiles $(5^{th}, 10^{th}, ..., 95^{th})$ relative to the nucleotide with worst quality at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

Figure S9. D

SNV position 2850

error position 2923

Distance per nucleotide (A/C/G/T) in the range [0,19] maximized over the read mapping direction (forward/reverse) and calculated as the sum of distances for nineteen percentiles (5th,10th,...,95th) relative to the nucleotide with worst quality at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

Figure S10. ROC curves for QQ–SNV without variant frequency filtering on HCV plasmid mixture test datasets

ROC curves for QQ-SNV without variant frequency filtering on HCV plasmid mixture datasets (all paired-end reads) with different spiked-in variant frequencies A) 10% B) 2% C) 1% and D) 0.5%, and comparing quality score recalibration *vs.* no quality score recalibration.

Figure S11. QQnorm.dir

Normalized recalibrated PHRED scores per nucleotide (A/C/G/T) in the forward and reverse read mapping and calculated for nineteen percentiles (5th,10th,...,95th) at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

Figure S12. QQ.dir

Distance per nucleotide (A/C/G/T) in the range [0,1] in the forward and reverse read mapping and calculated for nineteen percentiles (5th,10th,...,95th) relative to the nucleotide with worst quality at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

Distance per nucleotide (A/C/G/T) in the range [0,19] in the forward and reverse read mapping and calculated as the sum of distances for nineteen percentiles (5th,10th,...,95th) relative to the nucleotide with worst quality at SNV position 2850 and at error position 2923 for training sample 1 (out of 96 *in silico* read sets).

0

A

С

Nucleotide

G

Т

0.25

Т

0

А

С

Nucleotide

G

Figure S14. Training of the QQ–SNV model by weighted logistic regression

False positive : false negative ratio on the training data when varying the logistic regression weight $w_{no error}$ (w_{error} =1) and using cutoff 0.5 for error/no error classification (QQ-SNV_D).

Performance of QQ-SNV_{HS-P80}, LoFreq, ShoRAH, and V-Phaser 2 on plasmid mixture test datasets by variant frequency (curves for Table 3–5). A) sensitivity on HIV plasmid mixture dataset 1 (Table 3). B) sensitivity on HIV plasmid mixture dataset 2 (Table 4) (variant frequencies shown for n>5 only). C) and D) sensitivity and false positives on HCV plasmid mixture datasets (all paired-end reads) (Table 5).

ROC curves for QQ-SNV without variant frequency filtering on HCV plasmid mixture datasets (all paired-end reads) at different coverage depths by downsampling A) 40% B) 10% C) 2.5% and D) 0.625%.

ROC curves for QQ-SNV with P50 variant frequency filtering on HCV plasmid mixture datasets (all paired-end reads) at different coverage depths by downsampling A) 40% B) 10% C) 2.5% and D) 0.625%.

ROC curves for QQ-SNV with P75 variant frequency filtering on HCV plasmid mixture datasets (all paired-end reads) at different coverage depths by downsampling A) 40% B) 10% C) 2.5% and D) 0.625%.

ROC curves for QQ-SNV with P80 variant frequency filtering on HCV plasmid mixture datasets (all paired-end reads) at different coverage depths by downsampling A) 40% B) 10% C) 2.5% and D) 0.625%.