

CATALYSIS

Supporting Information

Identification of Active and Spectator Sn Sites in Sn- β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis

Ceri Hammond,^{*[a]} Daniele Padovan,^[a] Abbas Al-Nayili,^[a] Peter. P. Wells,^[b, c] Emma K. Gibson,^[b, c] and Nikolaos Dimitratos^[a]

cctc_201500545_sm_miscellaneous_information.pdf

Figure S1(A). pXRD patterns of various Sn(O₂)- β catalysts prepared by physical mixing of SnO₂ and deAl- β , and containing different Sn contents. Black: deAlbeta; Red; 2Sn(O₂)- β ; Blue: 5Sn(O₂)- β and Green: 10Sn(O₂)- β . The reflections at 26.7° and 51.8° 2 θ provide the best insight regarding the presence of any SnO₂, although a broad reflection at 52.3° overlaps with the 51.8° reflection to some extent. As can be seen, the SnO₂ reflections are clearly discernible at a loading of 2 % SnO₂ (red diffraction pattern).

Figure S1(B). Expansion of the pXRD patterns between 20-25° 2 theta for: Black: Al-beta; Green: deAl-beta and Red; 2Sn-β. Shifts in the 2 theta position indicate a change in d-spacing and hence, unit cell volume.

Figure S2. UV-Vis spectra of various Sn- β catalysts prepared by SSI, and containing different Sn contents. Red; 2Sn- β ; Blue: 5Sn- β ; Purple: 8Sn- β and Green: 10Sn- β

Figure S3. Normalised XANES spectra of 2Sn-β (red), 5Sn-β (blue), 10Sn-β (green). Reference XANES spectra of SnO₂ and Sn foil are included for a comparison.

Figure S4. χ-data of hydrated Sn-β catalysts containing different Sn loadings; 2Sn-β (red), 5Sn-β (blue), 10Sn-β (green).

Figure S5. Comparison of the magnitude of the Fourier transform (FT) signal for dehydrated and hydrated Sn-β catalyst containing different loadings. 5Sn-β (blue), 10Sn-β (green).

Sample	$\frac{S_{BET}}{(m^2 g^{-1})^a}$	$\frac{S_{external}}{(m^2 g^{-1})^b}$	$\frac{S_{micro}}{(m^2 g^{-1})^c}$	V_{total} $(cm^3 g^{-1})^d$	V_{micro} $(\text{cm}^3 \text{ g}^{-1})^{\text{e}}$	V_{external} $(\text{cm}^3 \text{ g}^{-1})^{\text{f}}$
Al-Beta	587	91	496	0.451	0.230	0.221
de-Al-Beta	541	124	417	0.453	0.229	0.224
2% Sn-Beta	528	115	413	0.421	0.225	0.196
5% Sn-Beta	488	103	384	0.418	0.210	0.208
8% Sn-Beta	440	100	340	0.390	0.186	0.204
10% Sn-Beta	422	94	327	0.359	0.179	0.181
5% Sn-Beta 8% Sn-Beta 10% Sn-Beta	488 440 422	103 100 94	384 340 327	0.418 0.390 0.359	0.210 0.186 0.179	0.208 0.204 0.181

Table S1. Porosymmetry data obtained for various zeolite beta materials.^{*a*}

^a BET surface area (S_{BET}) is calculated from the Brunauer-Emmett-Teller method; ^{b,c,e} the external surface area ($S_{external}$), micropore surface area (S_{micro}) and the micropore volume (V_{micro}) are calculated from the t-plot method; ^d the total pore volue (V_{total}) is evaluated at P/P₀=0.99; ^f the external pore volume ($V_{extrnal}$) is calculated according to $V_{total} - V_{micro}$.