Supplementary Information

Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

Johanna Drögemüller^{1,§}, Martin Strauß^{1,§}, Kristian Schweimer¹, Marcel Jurk², Paul Rösch¹,

Stefan H Knauer^{1,*}

¹ Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität

Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

² present address: Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin,

Germany

[§] These authors contributed equally to this work

* corresponding author

Contents

Supplementary Table 1	2
Supplementary Figure 1	4
Supplementary Figure 2	5
Supplementary Figure 3	6
Supplementary Figure 4	7
Supplementary Figure 5	8
Supplementary References	10

Supplementary Table 1: Coordinates of the β flap tip helix in the modeled NusA-NTD^A:*Tt*RNAP complex. The table is an extract of the PDB file of elongating *Tt*RNAP (residues 767-781 of the β subunit; PDB ID: 2O5I) docked to NusA-NTD^A as described in the Material and Methods section, giving the position of *Tt*RNAP relative to the deposited coordinates of NusA-NTD^A (PDB ID: 2KWP).

ATOM	10777	N	PRO	С	767	3.453	-1.849	-42.571	1.00	90.52	N
ATOM	10778	CA	PRO	С	767	2.398	-2.073	-41.584	1.00	91.06	C
ATOM	10779	С	PRO	С	767	2.633	-1.165	-40.362	1.00	92.21	C
ATOM	10780	0	PRO	С	767	3.412	-0.213	-40.472	1.00	92.68	0
ATOM	10781	СВ	PRO	С	767	2.524	-3.559	-41.274	1.00	90.38	C
ATOM	10782	CG	PRO	С	767	3.028	-4.129	-42.533	1.00	90.03	C
ATOM	10783	CD	PRO	С	767	4.098	-3.134	-42.897	1.00	90.44	C
ATOM	10784	Ν	THR	С	768	2.013	-1.418	-39.212	1.00	92.37	N
ATOM	10785	CA	THR	С	768	2.261	-0.517	-38.082	1.00	93.42	C
ATOM	10786	С	THR	С	768	2.739	-1.281	-36.849	1.00	94.34	C
ATOM	10787	0	THR	С	768	2.104	-2.254	-36.442	1.00	94.97	0
ATOM	10788	СВ	THR	С	768	0.994	0.286	-37.704	1.00	92.74	C
ATOM	10789	OG1	THR	С	768	0.329	0.726	-38.894	1.00	92.51	0
ATOM	10790	CG2	THR	С	768	1.369	1.533	-36.866	1.00	91.14	C
ATOM	10791	Ν	PRO	С	769	3.867	-0.844	-36.239	1.00	95.40	N
ATOM	10792	CA	PRO	С	769	4.475	-1.458	-35.040	1.00	95.44	C
ATOM	10793	С	PRO	С	769	3.577	-1.368	-33.769	1.00	95.51	C
ATOM	10794	0	PRO	С	769	3.583	-2.294	-32.943	1.00	95.59	0
ATOM	10795	СВ	PRO	С	769	5.803	-0.706	-34.892	1.00	96.45	C
ATOM	10796	CG	PRO	С	769	6.147	-0.342	-36.332	1.00	95.78	C
ATOM	10797	CD	PRO	С	769	4.806	0.125	-36.849	1.00	95.78	C
ATOM	10798	Ν	GLU	С	770	2.827	-0.273	-33.609	1.00	93.98	N
ATOM	10799	CA	GLU	С	770	1.962	-0.077	-32.434	1.00	93.34	C
ATOM	10800	С	GLU	С	770	0.563	-0.681	-32.666	1.00	93.16	C
ATOM	10801	0	GLU	С	770	-0.118	-1.081	-31.718	1.00	92.30	0
ATOM	10802	СВ	GLU	С	770	1.849	1.427	-32.127	1.00	92.37	C
ATOM	10803	CG	GLU	С	770	3.152	2.249	-32.385	1.00	90.19	C
ATOM	10804	CD	GLU	С	770	3.957	2.594	-31.128	1.00	88.39	C
ATOM	10805	OE1	GLU	C	770	4.437	1.679	-30.437	1.00	87.21	0
ATOM	10806	OE2	GLU	C	770	4.113	3.798	-30.832	1.00	87.50	0
ATOM	10807	N	GLU	C	771	0.159	-0.730	-33.938	1.00	93.66	N
ATOM	10808	CA	GLU	C	//1	-1.116	-1.314	-34.376	1.00	95.22	C
ATOM	10809	C	GLU	C	//1	-0.991	-2.838	-34.494	1.00	96.29	C
ATOM	10810	0	GLU	C	771	-1.993	-3.55/	-34.560	1.00	96.81	0
ATOM	10811	CB	GLU	C	//1	-1.531	-0.719	-35.743	1.00	95.59	C
ATOM	10812	CG	GLU	C	//1	-2.798	-1.302	-36.423	1.00	95.80	C
ATOM	10813	CD	GLU	C	//1	-2.986	-0.867	-37.893	1.00	96.05	C
ATOM	10814	OEI	GLU	C	//1	-4.129	-0.944	-38.403	1.00	95./1	0
ATOM	10815	OEZ N	GLU	C	772	-1.999	-0.457	-38.544	1.00	95.00	U
ATOM	10010	N	ARG	C	772	0.255	-3.318	-34.520	1.00	95.94	N
ATOM	10010	CA	ARG	C	112	0.302	-4./55	-34.398	1.00	90.21 07 11	C
ATOM	10010		ARG	C	772	0.310	-5.431	-33.247	1.00	97.11	C
ATOM	10019	O CD	ARG	C	112	-0.155	-0.5//	-33.193	1.00	9/.59	0
ATOM	10020	CD CC	ARG	C	772	2.031	-4.975	-34.992	1.00	94.95	C
ATOM	10021	CG	ARG	C	772	2.497	-0.441	-35.071	1.00	92.40	C
ATOM	10022	NE	ARG	C	772	1.920	-7.149	-30.290	1 00	91.50	
ATOM	10023		ARG	C	772	1.943	-0.309	-37.490	1.00	90.45	N
ATOM	10024	С2 NU1	ARG	C	772	1.929	-0.773	-30.739	1 00	90.01 01 27	C N
	10826		ARG	C	772	1 900	-5.079	-30.970	1 00	91.27	IN N
	10020	M	TEIT	C	772	1.330	-1 710	-32 164	1 00	07 07	IN N
	10828		LEU	C	773 773	0.029	-4./10	-30 800	1 00	97.02	N
	10820	C	Т.ЕП	C	נוי רדך	-1 060	-5.100	-30.000	1 00	96 83	C
	10830	0	T.FII	C	772	-1.009	-6.17/	-29 87/	1 00	90.03	
АТОМ	10831	CB	LEII	c	773	1 212	-4.334	-29.791	1,00	96.99	C C
АТОМ	10832	CG	LEII	c	773	2.750	-4.388	-29.822	1,00	96.94	C C
	10002			-	5	2	1.000				C

ATOM	10833	CD1	LEU	С	773	3.329	-3.401	-28.800	1.00	96.92	C
ATOM	10834	CD2	LEU	С	773	3.246	-5.800	-29.502	1.00	97.02	C
ATOM	10835	N	LEU	С	774	-1.789	-4.120	-30.755	1.00	95.96	N
ATOM	10836	CA	LEU	С	774	-3.229	-4.033	-30.473	1.00	95.46	С
АТОМ	10837	С	LEU	С	774	-3.998	-5.145	-31.174	1.00	95.47	С
АТОМ	10838	0	LEU	С	774	-4.830	-5.817	-30.562	1.00	96.22	0
АТОМ	10839	CB	T.EU	C	774	-3.806	-2.692	-30.942	1.00	93.90	C
АТОМ	10840	CG	LEU	C	774	-5.346	-2.636	-30.934	1.00	92.29	C C
АТОМ	10841	CD1	LEU	C	774	-5.830	-2.770	-29.504	1.00	91.81	C C
атом	10842	CD2	LEU	c	774	-5 833	_1 345	_31 545	1 00	91 22	C C
	10843	N	ARC	c	775	-3 735	-5 325	-32 462	1 00	95 29	U N
	10045		ANDC	C	775	-4 402	-6 381	-33 208	1 00	9/ 68	C I
лтом	10044	C	ARC	c	775	4 200	7 740	22 520	1 00	01 67	C
ATOM	10045	0	ARG	C	775	-4.209	-7.740	-32.320	1 00	94.07	C
ATOM	10040	CD	ARG	C	775	- 3.104	-0.404	-32.214	1 00	94.44	0
ATOM	10047		ARG	C	775	-3.000	-0.445	-34.034	1 00	94.50	C
ATOM	10040	CG	ARG		775	-4.300	-5.341	-35.013	1.00	92.12	C
ATOM	10849		ARG	C	775	-5.880	-3.350	-35.749	1.00	90.04	C N
ATOM	10850	NE	ARG	C	775	-0.342	-4.308	-30.888	1.00	89.33	N
ATOM	10851	CZ	ARG	C	115	-/.616	-4.420	-37.234	1.00	88.70	C
ATOM	10852	NHI	ARG	C	//5	-8.56/	-5.009	-36.526	1.00	88.08	N
ATOM	10853	NH2	ARG	C	//5	-7.937	-3.684	-38.292	1.00	88.26	N
ATOM	10854	N	SER	С	776	-2.950	-8.120	-32.264	1.00	94.65	N
ATOM	10855	CA	SER	С	776	-2.568	-9.411	-31.644	1.00	94.82	C
ATOM	10856	С	SER	С	776	-3.212	-9.627	-30.236	1.00	94.23	C
ATOM	10857	0	SER	С	776	-3.590	-10.761	-29.910	1.00	94.33	0
ATOM	10858	СВ	SER	С	776	-1.021	-9.512	-31.521	1.00	94.77	C
ATOM	10859	OG	SER	С	776	-0.360	-9.645	-32.780	1.00	94.97	0
ATOM	10860	N	ILE	С	777	-3.334	-8.580	-29.415	1.00	93.70	N
ATOM	10861	CA	ILE	С	777	-3.901	-8.698	-28.057	1.00	92.75	C
ATOM	10862	С	ILE	С	777	-5.350	-9.252	-28.072	1.00	93.16	C
ATOM	10863	0	ILE	С	777	-5.631	-10.255	-27.404	1.00	93.55	0
ATOM	10864	СВ	ILE	С	777	-3.896	-7.308	-27.305	1.00	92.10	C
ATOM	10865	CG1	ILE	С	777	-2.455	-6.821	-27.095	1.00	91.21	C
ATOM	10866	CG2	ILE	С	777	-4.534	-7.449	-25.920	1.00	91.63	C
ATOM	10867	CD1	ILE	С	777	-2.357	-5.456	-26.433	1.00	90.12	C
ATOM	10868	N	PHE	С	778	-6.256	-8.615	-28.820	1.00	93.48	N
ATOM	10869	CA	PHE	С	778	-7.673	-9.029	-28.887	1.00	93.33	C
ATOM	10870	С	PHE	С	778	-7.928	-10.029	-30.029	1.00	94.16	C
ATOM	10871	0	PHE	С	778	-8.818	-10.872	-29.934	1.00	93.84	0
ATOM	10872	СВ	PHE	С	778	-8.583	-7.804	-29.105	1.00	92.40	C
ATOM	10873	CG	PHE	С	778	-8.687	-6.861	-27.918	1.00	91.76	C
ATOM	10874	CD1	PHE	С	778	-7.540	-6.454	-27.198	1.00	91.29	C
ATOM	10875	CD2	PHE	С	778	-9.943	-6.350	-27.533	1.00	91.20	С
ATOM	10876	CE1	PHE	С	778	-7.638	-5.546	-26.104	1.00	90.92	С
ATOM	10877	CE2	PHE	С	778	-10.067	-5.440	-26.441	1.00	91.24	С
ATOM	10878	CZ	PHE	С	778	-8.906	-5.037	-25.723	1.00	90.85	С
ATOM	10879	N	GLY	С	779	-7.153	-9.925	-31.108	1.00	95.41	N
ATOM	10880	CA	GLY	С	779	-7.313	-10.826	-32.242	1.00	97.01	С
ATOM	10881	С	GLY	С	779	-6.406	-10.473	-33.421	1.00	97.94	С
ATOM	10882	0	GLY	С	779	-6.809	-9.697	-34.309	1.00	98.21	0
АТОМ	10883	N	GLU	С	780	-5.190	-11.038	-33.414	1.00	98.62	N
АТОМ	10884	CA	GLU	С	780	-4.154	-10.817	-34.448	1.00	98.20	C
АТОМ	10885	С	GLU	C	780	-4.735	-10,916	-35.859	1.00	97.77	C
АТОМ	10886	0	GLU	C	780	-4.483	-10.050	-36.707	1.00	97.44	0
АТОМ	10887	CB	GLU	C	780	-3.002	-11.842	-34.299	1.00	98.74	C
АТОМ	10888	CG	GLU	C	780	-3.479	-13.315	-34,185	1.00	98.09	C
Атом	10889	CD	GLU	C	780	-2.821	_14 257	-35,186	1 00	97.77	C C
АТОМ	10890	OE1	GLU	C	780	-3.289	-15 415	-35,292	1 00	97.28	0
АТОМ	10891	OE2	GLU	C	780	-1.848	-13.846	-35,859	1 00	97.54	0
	10892	N	T.VC	c	781	_5 507	_11 078	-36,099	1 00	97 22	0 N
	10092	C 7	TVG	c	7Q1	-5.507 -6 1/7	_12 202	_37 202	1 00	96 21	N
	10093	CA	T'AG	C	701 701	-0.14/ _7 202	-11 200	-37 630	1 00	05 07	C
	10094	0	T VC	C	701 701	-/.292	11 522	27 511	1 00	90.0/	C o
	10093	C P	T AG	C	701 701	-0.400	-12 642	-37.011	1 00	20.04 05 20	0
ATOM	10007		LIS	C	/01 701	-0.0/5	-13.042	-31.491	1 00	90.20	C
ATOM	10000		цтр т мо	C	/01 701	-/.331	-14.1/3	-30.220	1 00	93.00	C
ATOM	10000		LIS	C	/01	-8.1/6	-15.409	-30.492	1.00	93.UI	C
ATOM	10000	CE	LYS	C	181	-/.389	-10.500	-3/.197	1.00	92.99	C
ATOM	T0200	ΝZ	LIS	C	1 Q T	-6.056	-10./12	-30.568	τ.00	93.33	N

Supplementary Figure 1: Structures of NusG-NTD and RfaH-NTD. (a) RNAP binding site of NusG-NTD. Structure of NusG-NTD (PDB ID: 2K06) in cartoon representation, grey. Ile, Leu, and Val residues are shown as sticks with the carbon atoms of their methyl groups represented as spheres. Strongly affected methyl groups, dark red; slightly affected methyl groups, light red; unaffected methyl groups, grey; unassigned methyl groups, black. (b) β GL binding motif of RfaH-NTD. Structure of RfaH-NTD (PDB ID: 2OUG) in cartoon representation, orange. Residues involved in β GL binding are shown as blue sticks and labeled.

Supplementary Figure 2: Displacement of RNAP from NusE^{Δ} by NusG-CTD. 2D [¹H,¹⁵N]-HSQC spectra of free NusB:[¹⁵N]-NusE^{Δ}, black, NusB:[¹⁵N]-NusE^{Δ} in the presence of RNAP in equimolar concentration, red, and NusB:[¹⁵N]-NusE^{Δ} in the presence of RNAP and NusG-CTD (molar ratio 1:1:1, green; 1:1:3, blue; 1:1:10, purple). Black arrows indicate the chemical shift changes that occur upon complex formation of NusG-CTD and NusB:[¹⁵N]-NusE^{Δ 1}.

Supplementary Figure 3: Superposition of the [${}^{1}H, {}^{15}N$]-HSQC spectra of [${}^{15}N$]-NusA-NTD(1-137), red, and [${}^{15}N$]-NusA-NTD^{Δ}, black. The protein concentration was 400 μ M in each sample.

Supplementary Figure 4: Electrostatic potential molecular surface of NusA-NTD^{Δ}. NusA-NTD^{Δ} in cartoon and surface representation. The electrostatic surface potential is colored from -2 kT/e, red, to +2 kT/e, blue.

Supplementary Figure 5: Comparison of NusA-NTD structures. (a-e) Superposition of NusA-NTD^{Δ} (pink) with (a) *Bs*NusA-NTD (blue, PDB ID: 2MT4, root mean square deviation

(r.m.s.d.) 1.8 Å), (**b**) *Tm*NusA-NTD (orange, PDB ID: 1HH2, r.m.s.d. 1.9 Å) (**c**) *Tm*NusA-NTD (grey, PDB ID: 1L2F, r.m.s.d. 1.7 Å), (**d**) *Mt*NusA-NTD (violet, PDB ID: 1K0R, r.m.s.d. 1.8 Å), and (**e**) *Pl*NusA-NTD (yellow, PDB ID: 4MTN, r.m.s.d. 1.4 Å). The linker helix was not used for the superpositions. (**f**) Superposition of NusA-NTD structures shown in (**a-e**). The linker helix is shown in bright colors. (**g**) NOE network fixing the position of the linker helix in NusA-NTD^{Δ} (cartoon representation, grey; the linker helix is highlighted in purple). The inset indicates how the molecule is rotated in respect to (**a**). Residues participating in the NOE network are labeled and shown as sticks (carbon atoms, dark grey; nitrogen atoms, blue; oxygen atoms, red; hydrogen atoms, white). Unambiguously identified NOEs are shown as black lines. For clarity only one NOE is displayed per methyl group (using the corresponding methyl carbon atom as center).

Supplementary References

 Burmann, B. M. *et al.* A NusE:NusG Complex Links Transcription and Translation. *Science* 328, 501-504 (2010).