Supplementary Information

Regulation of iron homeostasis by the p53-ISCU pathway

Yuki Funauchi^{1,5}, Chizu Tanikawa¹, Paulisally Hau Yi Lo¹, Jinichi Mori¹, Yataro Daigo^{2,3}, Atsushi Takano^{2,3}, Yohei Miyagi⁴, Atsushi Okawa⁵, Yusuke Nakamura⁶ and Koichi Matsuda^{1*}

Supplementary Figure 1. Induction of ISCU by p53.

U373 (a) or H1299 (b) cells were infected with adenovirus expressing p53 (Ad-p53) or LacZ (Ad-LacZ) at a multipleultiplicity of infection (MOI) of 10 or 20. (a) Protein expressions of ISCU2 and ISCU2 precursor from Fig. 1b were quantified using Image Quant TL Analysis Toolbox (GE healthcare life science, Piscataway, NJ, USA) according to the manufacturer's instructions. β -actin was used for the normalization of expression levels. Untreated cells were taken as 1. Error bars represent S.D. (n = 3). (b) *ISCU1* and *ISCU2* expression were analyzed by quantitative PCR. *ACTB* was used for the normalization of expression levels. Error bars represent S.D. (n = 3).

Supplementary Figure 2. Cell proliferation after overexpression of ISCU.

Colony formation assay was carried out using U373MG, H1299, and HCT116 cells. Cells were transfected with plasmids expressing mock or ISCU2, and were cultured in the presence of geneticin (0.8, 0.8, and 0.5 mg/ml for U373MG, H1299, and HCT116 cells, respectively) for 2 weeks. The number of colonies was quantified using the Image J software.

а

С

Supplementary Figure 3. RNA-EMSA using biotin-labelled or non-labelled probe containing IRE in the 5' UTR of FTH1 mRNA.

(a) HCT116 cells were treated with ADR. After 36 h, cytosolic cellular fractions were incubated with each probe for 30min, and RNA-EMSA was performed. (b) Twenty-four hours after transfection of each siRNA, HCT116 cells were treated with ADR. After 36 h, cytosolic cellular fractions were incubated with probe for 30min, and RNA-EMSA was performed. The arrowhead indicates protein-RNA complex. The biotin-labelled probe was incubated with cytosolic liver extract (PC) or without protein extract (NC). (c) At 24 h after transfection of each siRNA, HCT116 cells were treated with adriamycin (ADR). At 36 h after treatment, gPCR analysis were performed. EGFP was used as control. ACTB was used for the normalization of expression levels. Error bars represent S.D. (n = 3)

Supplementary Figure 4

Supplementary Figure 4. Regulation of TFRC by p53-ISCU pathway.

(a) and (b) At 24 h after transfection of each siRNA, HCT116 (p53 wild-type) cells were treated with adriamycin (ADR). At 36 h after treatment, cells were subjected to western blot analysis (a) or qPCR analysis (b). siRNA against EGFP was used as control. CBB staining was shown for loading control (a). *ACTB* was used for the normalization of expression levels (b). Error bars represent S.D. (n = 3). (c) At 24 h after transfection of each siRNA, HCT116 cells were treated with ADR. At 36 h after treatment, cytosolic fractions of cells were incubated with TFRC probe for 30 min and RNA EMSA was performed. Arrowhead indicates protein-RNA complex.

Supplementary Figure 5. ISCU modulated intracellular iron level.

(a) At 24 h after transfection of each siRNA, HCT116 cells were treated with 2ug/ml of Adriamycin (ADR) for 2 h. At 36 h after treatment, cells were collected to measure intracellular iron level. Error bars represent SD (n = 6). *, P < 0.05. (b) Expression of transferrin mRNA in ADR-treated HCT116 *p53^{-/-}* or HCT116 *p53^{+/+}* cells.

b

С * P=0.0287 P=0.955 1.4 2 1.2 $Fth1/\beta$ -actin Tfrc/β-actin 1.5 1 0.8 1 0.6 0.4 0.5 0.2 0 0 р53^{-/-} p53+/+ р53^{-/-} p53+/+ HID HID ╋

Supplementary Figure 6. Expression of Iscu, Tfrc, and Fth1 in mouse liver tissues after high-iron diet. $p53^{+/+}$ (n = 3) or $p53^{-/-}$ (n = 6) mice were fed with a high-iron diet (HID) at 6 weeks of age for 3 weeks. At 9 weeks of age, liver tissues were collected for quantitative PCR (qPCR) analysis of *Iscu* mRNA (a) or western blot analysis (b). Tfrc, Fth1, and β -actin expressions from (b) were measured using Image Quant TL Analysis Toolbox (GE healthcare life science, Piscataway, NJ, USA) according to the manufacturer's instructions (c). β -actin was used for the normalization of expression levels. First sample was taken as 1. Error bars represent S.D. *, P<0.05.

Supplementary Figure 7. Expression of ISCU in normal human tissues.

qPCR analysis of ISCU in 38 normal human tissues. ACTB was used for the normalization of expression levels.

Supplementary Figure 8. The regulation of Fe-S proteins by p53.

Expression of *FDX1L* and *RSAD2* mRNA in ADR-treated HCT116 *p53^{-/-}* or HCT116 *p53^{+/+}* cells.

Supplementary Table 1. Sequences of DNA and RNA oligonucleotides.

Cloning	Forward	Reverse				
ISCU1	AAAGAATTCTCACAAATGGTTCTCATTGA	AAACTCGAGGAGGGCTTTCTTCTCTGCCT				
ISCU2	AAAGAATTCGGCAAGATGGCGGCGGCTGG AAAACTCGAGGAGGGCTTTCTTCTCTGCCT					
mutant ISCU	GATGAAAAGGGGAAAATCGTAGACGCACGCTTCAAAACAT CACTTGAATCTGTAACTTCATAACATCCCC TTGGCTGTGGTTC CCCCCACCAGTCCAGT					
siRNA oligonucleotides	sense	antisense				
siISCU-a	UGUGGUGACGUAAUGAAAUTT	AUUUCAUUACGUCACCACATT				
siISCU-b	GAUUGUGGAUGCUAGGUUUTT AAACCUAGCAUCCACAAUCTT					
siEGFP	GCAGCACGACUUCUUCAAGTT CUUGAAGAAGUCGUGCUGCTT					
siISCU1-a	GGUAUCUCAAAUCUGUGAATT UUCACAGAUUUGAGAUACCTT					
siISCU1-b	GUCACAAAUGGUUCUCAUUTT AAUGAGAACCAUUUGUGACTT					
siISCU1-c	GGUUCUCAUUGACAUGAGUTT	ACUCAUGUCAAUGAGAACCTT				
siISCU2	UCACAAGAAGGUUGUUGAUTT AUCAACAACCUUCUUGUGATT					
sip53	GACUCCAGUGGUAAUCUACTT GUAGAUUACCACUGGAGUCTT					
siIRP1	GCCAUUGGAUCCUGUACAATT	UUGUACAGGAUCCAAUGGCTT				
Quantitative real-time PCR	Forward	Reverse				
ISCU	AACACAGATATCGCCAAGGAG TTTGGGTTCTTGTTTCAATTTGT					
ISCU1	TCATTGACATGAGTGTAGACCTTTC CACCAGTCCAGTTCCAACATT					
ISCU2	ACTCTATCACAAGAAGGTTG CCACAATCTTCCCCTTTTCA					
FTH1	GCCAGAACTACCACGAGAC CATCATCGCGGTCAAAGTAG					
TFRC	CAATGATCGTGTCATGAGAGTG	TAAAGCTGGCAGCGTGTG				
АСТВ	CCCTGGAGAAGAGCTACGAG TGAAGGTAGTTTCGTGGATGC					
IRP1	GCAGGCACCACAGACTATCC CAGCAGCATCAAACACATCA					
mlscu	CCTGTGAAACTGCACTGCTC TCTCTGGCTCCTCCTTCTTG					
mActb	CTAAGGCCAACCGTGAAAAG ACCAGAGGCATACAGGGACA					
mWaf1	TCCACAGCGATATCCAGACA	GGACATCACCAGGATTGGAC				
Gene repoter assay	Forward	Reverse				
p53BR	AGGGTCCTGTTGGGACTTGT CAAAAACATTACGCATGTTGG					
p53BRmt	GGATTTTTCTTGAGTCCAGGGACA CAAAAGAACCCTGCCTCCTGGGCTGTT					
mp53BS	ATACAAGCAC	AAGCATACGT				
ChIP assay	Forward	Reverse				
Genomic fragment including p53BS	CTTCGTGCGTCCCAATTTTA	GTGTGTCTGTCCCTGGACTC				
RNA EMSA	seqences					
biotinilated IRE from 5' UTR of FTH1	UCUUGCUUCAACAGUGUUUGAACGGAAC					
biotinilated IRE from 3' UTR of TFRC	AAUUAUCGGGAACAGUGUUUCCCAUAAUU					

Supplementary Table 2. Association between ISCU-positivity in hepatocellular carcinoma tissues and patients' characteristics (n=92).

		Total	Strong expression n =45	Weak expression n = 33	Absent expression n = 14	P-value Strong vs Weak and Absent
		n = 92				
Gender						
	Male	69	32	26	11	0.4700
	Female	23	13	7	3	0.4736
Age (years)						
	< 65	28	16	8	4	0.2667
	65=<	64	29	25	10	0.3667
Virus Infectio	on					
	HBV	14	6	8	0	
	HCV	57	27	18	12	0.3135*
	No infection	21	12	7	2	
pT factor						
•	T1	66	27	27	12	
	T2-T4	26	18	6	2	0.0202**
p53 staining						
	Positive	26	9	11	6	0.407
	Negative	66	36	22	8	0.107
Ferritin	U					
	Positive	72	32	26	14	0.1319
	Negative	20	13	7	0	

* HCV and HBV positive vs no infection

**P < 0.05 (Fisher's exact test)