## Structural analysis of fungus-derived FAD glucose dehydrogenase

Hiromi Yoshida<sup>1</sup>, Genki Sakai<sup>2</sup>, Kazushige Mori<sup>3</sup>, Katsuhiro Kojima<sup>3</sup>, Shigehiro Kamitori<sup>1</sup>, and Koji Sode<sup>2,3,\*</sup>

<sup>1</sup> Life Science Research Center and Faculty of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa University, Kagawa 761-0793, Japan

<sup>2</sup> Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University

of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan

<sup>3</sup> Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan

\* Corresponding author

Correspondence to: <a href="mailto:sode@cc.tuat.ac.jp">sode@cc.tuat.ac.jp</a>



## Reordered main-chain of AfGDH with bound gluconolactone.

The structures around isoalloxiazine ring of FAD in AfGDH (yellow) and AfGDH/LGC (green) were shown in stick and line model. The bound LGC is not represented.



## Supplementary Figure S2 A bound LGC on molecular surface.

A bound LGC was located at inter-molecular surface in the crystal, forming hydrogen bonds with Lys76, Asn499, (Asn346), and two water molecules. The label with parenthesis belong to the neighbouring molecule (light purple) in molecular packing . Water molecules interacting with LGC are represented as red spheres.



#### UV-VIS spectra analysis for reduction of AfGDHs by glucose

(a) Wild-type (b) His505Ala (c) His548Ala

The solid line represents the absorption spectrum of AfGDH in the absence of glucose, and the dotted line shows the absorption spectrum after incubation with 20 mM glucose for 1 min. Each spectra was measured for  $300\mu$ g/mL enzyme in 10mM potassium phosphate buffer pH6.5.



Molecular mass estimation of AfGDH using size exclusion chromatography

(a) Chromatogram of purified AfGDH on Superdex 200 10/300 GL column.

#### (b) Calibration curve

Purified AfGDH and standard proteins were applied to the Superdex 200 10/300 GL column (GE Healthcare Life Sciences, Uppsala, Sweden) equilbrated with 10mM potassium phosphate buffer pH6.5. The flow rate was 0.5mL/min.

Kav: partition coefficient



## Comparison of dimeric structure of glucose oxidase PaGOx (1GPE, purple) and monomer structure of AfGDH/LGC (green)

The intriguing glycosylation site of PaGOx (Asn93) and a potential glycosylation site of AfGDH (Asn69) are shown in orange stick model. The bound LGCs are not shown.

(a) Observed carbohydrates on PaGOx are presented in pink stick model and the extended carbohydrates attached to Asn93 reach to the other molecule each other for stabilizing dimer conformation<sup>21</sup>. (b) An additional AfGDH was superimposed onto the dimer form of PaGOx. A purple colored  $\beta$ -turn and N-terminal region including a short  $\alpha$ -helix of PaGOx are located at dimer interface. The green colored  $\beta$ -turn between B10 and B11 of AfGDH coresponding to the above  $\beta$ -turn of PaGOx is directed toward opposite site (to the center of dimer form of PaGOx), owing to a lack of corresponding N-terminal region. Such a  $\beta$ -turn caused stearic hindrance at dimer interface if AfGDH forms dimer as has been in PaGOx.



# Superimposed overall structure of glucose oxidases (AnGOx (1CF3, cyan) and PaGOx (1GPE, purple)) on AfGDH/LGC (green)

The glycosylation sites of AnGOx (Asn89) and PaGOx (Asn93) are shown in orange stick model and the observed extended carbohydrates are shown in pink line<sup>21</sup>. An potential glycosylation site of AfGDH (Asn69) is colored in orange. The bound LGCs are not shown.



#### The 6th hydroxyl group recognition of gluconolactone

Comparison of active site structures among AfGDH/LGC, AnGOx (1CF3), and PaGOx (1GPE). The active site structures of AnGOx (protein: cyan; FAD: pink) and PaGOx (protein: purple; FAD: pink) were superimposed onto that of AfGDH/LGC (protein: green; FAD: orange; LGC: yellow). The label of residues belong to AfGDH and followed by AnGOx and PaGOx. The water molecules interacted with LGC are represented in red spheres. Dotted lines show the distances between selected atoms.



#### Sequence alignment of AfGDH and GOxs.

FADGDH from *A. flavus* (AfGDH) is aligned with glucose oxidases from *Aspergillus niger* (AnGOx; 1CF3) and *Penicillium amagasakiense* (PaGOx; 1GPE).

Red and blue boxes indicate  $\alpha$ -helix and  $\beta$ -strand, respectively. The number with secondary structure region belongs to the structure of AfGDH.

| Cofactor | AfGDH     | Distance (Å) | AfGDH/LGC  | Distance (Å) |
|----------|-----------|--------------|------------|--------------|
| FDA N5F  | Gly94 N   | 3.15         | Gly94 N    | 3.21         |
| FDA N5F  |           |              | LGC C1     | 2.99         |
| FDA N5F  |           |              | LGC O1     | 3.07         |
| FDA N5F  |           |              | LGC O2     | 3.05         |
| FDA O4F  | Met95 N   | 3.14         | Gly94 N    | 3.21         |
| FDA O4F  | Ala96 N   | 2.96         | Gly94 O    | 2.93         |
| FDA O4F  |           |              | His548 ND1 | 3.27         |
| FDA O4F  |           |              | HOH 231    | 2.41         |
| FDA N3F  | Ala96 O   | 2.89         | His548 ND1 | 3.21         |
| FDA O2F  | Ala96 O   | 3.20         |            |              |
| FDA O2F  | Val550 N  | 2.94         | Val550 N   | 2.82         |
| FDA O2F  | HOH 6     | 2.91         | HOH 12     | 3.24         |
| FDA O2'  | Asn93 ND2 | 3.08         | Asn93 ND2  | 2.99         |
| FDA O3'  | HOH 69    | 2.98         | HOH 20     | 3.00         |
| FDA O4'  | Thr15 OG1 | 2.77         | Thr15 OG1  | 2.76         |
| FDA O5'  | Thr15 OG1 | 3.17         | Thr15 OG1  | 3.19         |
| FDA O1P  | Ser16 N   | 3.03         | Ser16 N    | 3.00         |
| FDA O1P  | Ser16 OG  | 2.80         | Ser16 OG   | 2.81         |
| FDA O1P  | HOH 1     | 3.01         | HOH 7      | 2.95         |
| FDA O2P  | Ala538 N  | 3.16         | Ala538 N   | 3.12         |
| FDA O2P  | HOH 31    | 2.73         | HOH 1      | 2.74         |
| FDA O1A  | Thr89 OG1 | 2.64         | Thr89 OG1  | 2.65         |
| FDA O1A  | HOH 36    | 2.62         | HOH 4      | 2.79         |
| FDA O1A  | HOH 57    | 2.82         | HOH 27     | 2.78         |
| FDA O2A  | Thr15 N   | 3.17         | Thr15 N    | 3.15         |
| FDA O2A  | Thr15 OG1 | 2.66         | Thr15 OG1  | 2.76         |
| FDA O2A  | Thr89 N   | 2.90         | Thr89 N    | 2.88         |
| FDA O5B  | HOH 1     | 3.25         | HOH 7      | 3.26         |
| FDA O3B  | Glu36 OE1 | 2.68         | Glu36 OE1  | 2.68         |
| FDA O3B  | Glu36 OE2 | 3.24         | Glu36 OE2  | 3.22         |
| FDA O3B  | Ala85 O   | 3.02         | Ala85 O    | 3.03         |
| FDA O2B  | Glu36 OE2 | 2.73         | Glu36 OE2  | 2.74         |
| FDA O2B  | Trp63 NE1 | 3.17         | Trp63 NE1  | 3.07         |
| FDA O2B  | Gly83 O   | 3.20         | Gly83 O    | 3.24         |
| FDA N1A  | Ala235 N  | 2.96         | Ala235 N   | 2.86         |
| FDA N3A  | Ala37 N   | 3.25         | Ala37 N    | 3.22         |
| FDA N6A  | Ala235 O  | 2.88         | Ala235 O   | 2.87         |

**Supplementary Table S1.** Selected hydrogen bond and van der Waals contact distance to reduced FAD (< 3.3 Å).

| Ligand | AfGDH | Distance (Å) | AfGDH/LGC  | Distance (Å) |
|--------|-------|--------------|------------|--------------|
| LGC C1 |       |              | FDA N5F    | 2.99         |
| LGC O1 |       |              | His548 ND1 | 2.57         |
| LGC O1 |       |              | FDA C4F    | 2.85         |
| LGC O1 |       |              | FDA N5F    | 3.07         |
| LGC O2 |       |              | Asn503 O   | 2.66         |
| LGC O2 |       |              | His505 NE2 | 2.89         |
| LGC O2 |       |              | FDA N5F    | 3.05         |
| LGC O3 |       |              | Arg501 NH1 | 2.83         |
| LGC O3 |       |              | Asn503 OD1 | 2.78         |
| LGC O4 |       |              | Tyr53 OH   | 2.71         |
| LGC O4 |       |              | Glu413 OE1 | 2.60         |
| LGC O4 |       |              | Arg501 NH2 | 2.89         |
| LGC O6 |       |              | HOH 231    | 2.42         |
| LGC O6 |       |              | HOH 362    | 2.76         |

**Supplementary Table S2.** Selected hydrogen bond and van der Waals contact distances to bound LGC (< 3.3 Å).