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I. OVERVIEW OF THE RELATED METHODS

A. Probabilistic approaches

Whenever we apply some random graphs, including benchmarks for clustering, or other generative network models,
there is always an underlying probabilistic framework, from which the particular instances are drawn. The common
element in these representations is the non-negativity of the matrix elements of the input matrix.

However, when applying information theory on the structure of complex networks, there are different ways of
establishing it based on the identification of probability distribution(s) in the given input data, A. In the following we
give a brief overview about the possibilities and discuss the existing methods for both visualization and coarse-graining.
The possible definitions for the underlying probability distributions are the following.

• Network-level: The full matrix is one probability distribution, thus one system, which can be normalized by
a∗∗ =

∑
ij aij .

• Node-level: Each node, namely each row (or column), in the matrix is a separate probability distribution, which
can be normalized independently by ai∗ =

∑
j aij , ∀i. In this case each node is treated independently from the

rest of the network.

• Edge-level: Each edge, namely each entry in the matrix, aij , is a separate probability distribution together
with its complementer value 1 − aij , normalized independently to 1. In this case each edge is assumed to be
independent from the rest of the network. In this case both the adjacency matrix of the existing edges A, and
the adjacency matrix of the non-existing edges 1−A is used. In strong contrast to the network-level description,
where the probability distribution extends over N × N -points for N nodes, here 2-point distributions are
considered of the form {aij , 1− aij}.

While in this paper we focused on the network-level description, the node and edge level quality functions can be
straightforwardly obtained by applying our case for each probability distribution separately. Thus from our network-
level quality function

Q = D(A||B) =
∑
ij

aij ln
aijb∗∗
bija∗∗

=
∑
ij

aij ln
aij
bij

+ a∗∗ ln
b∗∗
a∗∗

(1)

we arrive at the following node-level quality function

QN =
∑
i

D(Ai||Bi) =
∑
ij

aij ln
aijbi∗
bijai∗

=
∑
ij

aij ln
aij
bij

+
∑
i

ai∗ ln
bi∗
ai∗

(2)

and edge-level quality function

QE =
∑
ij

D(Aij ||Bij) =
∑
ij

aij ln
aij
bij

+
∑
ij

(1− aij) ln
1− aij
1− bij

. (3)

While for visualization the probabilistic approach appears in the literature at all the network [41], node [40] and edge
[42, 49] levels, for coarse-graining we are only aware of the network [25, 26] and edge [24, 38] level descriptions. The
interesting lack of node-level approaches can be better understood in our framework due to the fact, that for coarse-
graining the QN quality function gives the same results as the Q quality function for the network-level approach due
to the degree preservation in the process.

Here we note, that the network-level probabilistic interpretation usually simply assumes, that the interaction
strengths are proportional to (or at least a proxy of) the chance of randomly observing an interaction between the
nodes (as applied in our case for the Zachary network [52]), without assuming the independence of the nodes or edges.
As for the human diseasome network [62], the edge weights have been directly constructed as co-occurrence values
of two diseases over associated genes in perfect accordance to our network-level framework, without any additional
assumptions.

In the following we review the most related methods in the literature in somewhat more details to give a clear
picture about the similarities and differences.
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B. Cross-entropy methods for visualization

Although the minimization of D(A||B) appears in the minimal discrimination information approach – also known
as the minimum cross-entropy (MinxEnt) approach by Kullback [53] –, there the goal is the opposite of ours, namely
to find the optimal ’real’ distribution, A, while the ’approximate’ distribution, B, is kept fixed. In this sense, our
optimization is an inverse MinxEnt problem [54]. Here we mention, that this kind of inverse optimization appears
also as a refinement step to improve the importance sampling in Monte Carlo methods (for highly restricted A-s),
under the name of cross-entropy method [55].

Here we note, that the concept of cross-entropy have already appeared in the field of graph drawing, such as in
the methods of refs. [42, 49]. Besides differences in the final quality function, the most important difference between
these methods and ours is, that in our case the relative entropy (or cross entropy) is calculated at the network-level,
while these methods operate at the edge-level.

C. Stochastic Neighbor Embedding for visualization

The Stochastic Neighbor Embedding (SNE) [40] is a high-dimensional data visualization tool based on minimizing
the Kullback-Leibler divergence between the input and the visual representation. In the case of the traditional
SNE, it falls into the category of a node-level probabilistic approach, where the quality function is the sum of the
Kullback-Leibler divergences of the rows, representing individual nodes. However, the symmetric SNE [41] works at
the network-level, optimizing a single Kullback-Leibler divergence over the whole system.

However, amongst others there are two main differences between these methods and our approach. First, in our
method the nodes are represented by extended distribution in the applied (low-dimensional) space, while in SNE
and its variants the nodes are represented by points without spatial extensions. As an advantage, in our case the
statistical weights of the nodes (the normalization of the distribution) are preserved and proportional to the degrees
(ai∗ row-sums) of the nodes. This way our method is able to adjust to the degrees of the nodes in strong contrast to
the SNE-related methods, thus it is generally expected to be more appropriate for real-world networks with highly
heterogeneous degree distributions.

Second, in our case the network is represented by the co-occurrence matrix of the probability distributions of
the nodes, while in SNE the nodes are represented by a probabilistic matrix, which is obtained by an arbitrary
transformation of the distances between the points in the low-dimensional space. Correspondingly, our method not
only provides the coordinates of the nodes, but also their probability distribution, representing the uncertainty of the
obtained positions. Moreover, in our case the extension of the distributions representing the uncertainty is also an
adjustable parameter for each node in contrast to the SNE. As a minor difference, here we also mention, that in the
SNE and related methods the diagonal elements are not considered to be parts of the system.

In the t-SNE method [41] the authors claim that it is beneficial to use a heavy-tailed transformation (such as the
Student t-distribution) of the distances into probabilities in order to circumvent the observed ”crowding” problem.
Having namely fixed widths for the distributions it might frequently occur, that we want to put too many neighbors in
the vicinity of a given node, while there is simply not enough space for it. In principle, no matter what transformation
or distribution we choose for the nodes in the visualization, if the degrees are sufficiently large (as in scale-free
networks), we always encounter this problem. This way, the choice of heavy-tailed distributions or transformation
rules might generally somewhat reduce the problem, but will not be able to solve it. On the other hand, the crowding
problem is trivially solved by adjusting also the spatial extension of the nodes, for any chosen distribution functions,
as used in our method. We also note, that in contrast to our general method, the t-SNE approach cannot be applied
in d > 3 dimensions due to the heavy tail of the Student t-distribution. Nevertheless, it is still an interesting
open problem to search for (normalizable) heavy-tailed distributions in our methodology for an even more improved
representation of scale-free networks compared to the simple Gaussian case considered above. As mentioned before,
our approach also adjusts the statistical weight of each node according to the degree, which again helps to treat the
situations with heterogeneous degrees.

However, in the simplest case of Gaussian distributions of equal variance (while only optimizing for the positions)
and leaving out the diagonal entries, the formulas for our optimization and for the symmetric SNE coincide when the
sum of each row (the degree os each node) is the same, thus in this special case (up to differences in the optimization
heuristics) both methods yield the same results.

As an additional significant improvement, in our paper we also presented the hierarchical visualization, being the
natural combination of our visualization and coarse-graining. As discussed in the text, the hierarchical approach
is expected to produce layouts of much higher quality for large networks, without a significant increase in the
computational time. At last, we note, that the t-SNE approach has been significantly improved recently [50] by
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applying the Barnes-Hut approximation [45], leading to a computational complexity of O(N logN) for N nodes,
enabling the technique to study networks containing > 107 nodes. Due to the similarities with the t-SNE the same
runtime and system sizes can be reached even in our case in the future enabling the analyses of massively large-scale
networks.

D. Stochastic block-models for coarse-graining

Karrer and Newman [25] suggested an improved stochastic block-model (SBM) for the identification of structural
patterns in graphs. In this generative model they start from the network-level probabilistic approach and write down
the probability of the input matrix assuming that it comes from a given block-model. The improvement comes from
the fact that the degrees of the nodes are kept fixed (on average) compared to traditional stochastic block-models,
leading to much less powerful results.

In the degree-corrected SBM, when looking for partitions of the input matrix with a given number of clusters,
the maximum probability (likelihood) solution coincides to the one having the minimal Kullback-Leibler divergence,
D(A||B), exactly as in our case. Recently it turned out [26] that for bipartite graphs it leads to higher quality results,
if the bipartite structure is a priori enforced, instead of letting the method to learn it during the optimization.

Since our coarse-graining approach is formulated for the more general case including overlapping partitions, the
state-of-the-art degree-corrected SBM can be viewed as a special case of our general coarse-graining method. As a
practical difference, in our case we apply the coarse-graining hierarchically, not only at a given number of clusters.
We note, however, that the hierarchical approach at a fixed number of clusters gives in general slightly different
results from the direct optimization at the same number of clusters. Computationally this is not surprising, since the
hierarchical approach has a polynomial run-time, while the clustering problem is known to be NP-hard. Based on
this observation one might think, that the direct clustering is superior to the hierarchical approach, which is true in
quality (D value), but not entirely true in purpose. The reason is, that the aim in the hierarchical coarse-graining is
to find a dendrogram, or global hierarchical description, which is as optimal as possible at all scales of the network,
not only at a fixed scale. This way the obtained dendrogram might not be optimal at all individual scales, while
providing a much more detailed, global representation about the network.

Here we mention, that in the mathematical literature concentrated around graph-limits and graphons [38] and in
the case of benchmark graphs for clustering [24], the term SBM has a different meaning. Namely, in these works, the
SBM is formulated in the edge-level probabilistic framework, assuming the independence of all the edges from each
other, in strong contrast to the network-level description.

E. Non-negative matrix factorization

While in the case of coarse-graining the aim is to fuse together parts of the input matrix, in the powerful technique
of Non-negative matrix factorization [32] the aim is to divide the existing parts into subunits, which appear to be
together more often. This way the goal is to find the most relevant building blocks. Given the number of blocks to
use, r, the NMF uses a quality function, reminiscent to the D(A||B) Kullback-Leibler divergence in our studies

F = −D(A||B) + a∗∗ ln b∗∗ − b∗∗ . (4)

Here the first term is independent of b∗∗ and the second term only fixes the value of b∗∗ to be equal to a∗∗, thus
the optimization is practically equivalent to the minimization of D(A||B). As in our case A (and B) can be a
non-symmetric matrix of size N × r. The main difference lies in the choice of the representation B, which is chosen
to be B = WH, where both W (N × r) and H (r × M) are to be found, having non-negative matrix elements,
with a fixed number of building blocks, r. The idea is to model the input matrix, A as a linear combination (W )
of appropriate hidden variables, H. Although this is a hard simultaneous optimization problem for W and H, for
practical applications there is an efficient iterative approach to find locally optimal solutions, starting from random
initial conditions [32].
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II. NUMERICAL OPTIMIZATION FOR VISUALIZATION

For the numerical optimization of the network layout, we have implemented a simple, general purpose simulated
annealing scheme. For Gaussian distributions we have also worked out a much faster Newton-Raphson update, which
has been also applied in the Kamada-Kawai method. In practice, we used a separate Newton-Raphson iteration
step for the d coordinates of the nodes in d spatial dimensions and for the σi widths and hi normalizations of the
distributions.

In each iteration step of the Newton-Raphson method, the node with the largest gradient amplitude (||J ||) was
updated in the direction and with a parameter step size, obtained by the second derivative matrix, F as −F−1J .
Since F is not always positive definite, special care was needed when the relative entropy increased in such a step.
In such a case, a sufficiently small step size was applied in the direction of the gradient vector, instead. This way
our technique has the same computational complexity as the widely applied Kamada-Kawai method (after the initial
calculation of pairwise graph-theoretic distances).

While the original, input matrix is given by A, the visualization generates the matrix of the pairwise overlaps of the
node distributions, marked as B. In our approach we minimize the relative entropy between the two distributions,
D(A||B), which measures the extra description length, when B is used to encode the data described by A,

D(A||B) =
∑
ij

aij ln
aijb∗∗
bija∗∗

≥ 0 . (5)

Here an asterisks indicates and index for which we summed up. During optimization the aij matrix elements of the A
input matrix were kept fixed, while the values of bij changed due to the variation of the xi, yi, σi (and hi) parameters
of the d-dimensional Gaussian distributions of the nodes, given by

ρ({x0i }, σ, n) =
n√

(2π)d
exp

(
−
∑d
i=1(xi − x0i )2

2σ2

)
. (6)

The overlap matrix elements of the node distributions in d = 2 dimensions, with notations x and y for the two
coordinates, were given by

bij =
hihj

2π(σ2
i + σ2

j )
exp

(
− (xi − xj)2 + (yi − yj)2

2(σ2
i + σ2

j )

)
. (7)

A. Newton-Raphson update in 2 dimensions

For a Newton-Raphson iteration step we need to calculate the first and second derivatives of the D relative entropy
as the function of the parameters of each node.

1. Updating the coordinates

When differentiating according to the coordinates, we obtain

∂bkj
∂xk

= −xk − xj
σ2
k + σ2

j

bkj , (8)

∂D

∂xk
= −2a∗∗

∑
j

xk − xj
σ2
k + σ2

j

(
bkj
b∗∗
− akj
a∗∗

)
. (9)

From this we can see, that
bkj

b∗∗
>

akj

a∗∗
induces a repulsive force, while the opposite case leads to an attractive force.

In order to have an efficient numerical implementation we introduce the following variables.

αxkj = −2a∗∗
xk − xj
σ2
k + σ2

j

bkj , (10)

βxkj = −2
xk − xj
σ2
k + σ2

j

akj . (11)
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Here the superscript x indicates, that we now consider the x direction in the formulas. This way the J gradient vector
has the following x-component

jx ≡
∂D

∂xk
=
αxk∗
b∗∗
− βxk∗ . (12)

Consequently, while using αx and βx, ∂D
∂xk

can be calculated in O(N) time ∀k, instead of the O(N2) approach of a
direct evaluation. For the y direction the same formulas apply with the substitution, x↔ y.

During the Newton-Raphson method that node, k, was updated, for which ||J || ≡ j2x + j2y was the largest. The F
second derivative matrix had the following elements at a given node, k.

fxx ≡
∂2D

∂x2k
= −2

a∗∗
b∗∗

∑
j

bkj
σ2
k + σ2

j

+ 2
∑
j

akj
σ2
k + σ2

j

− (αxk∗)
2

2a∗∗b2∗∗
− 1

b∗∗

∑
j

xk − xj
σ2
k + σ2

j

αxkj .

(13)

fxy ≡
∂2D

∂xk∂yk
= −2

αxk∗α
y
k∗

2a∗∗b2∗∗
− 1

b∗∗

∑
j

yk − yj
σ2
k + σ2

j

αxkj . (14)

In the Newton-Raphson method the step size in the x and y directions were automatically given by the vector −F−1J ,
if ∆ ≡ fxxfyy − f2xy 6= 0. As a result, in the x- and y-directions we obtained

δx =
1

∆
(fxyjy − fyyjx), δy =

1

∆
(fxyjx − fxxjy) . (15)

Since F is not always positive definite (not even in the traditional Kamada-Kawai method), special care was needed
when the relative entropy increased in such a step. In such a case, a sufficiently small step size was applied in the
direction of the gradient vector, instead of the direction given by F . In our implementation we started with the same
step size as before and iteratively kept dividing it by two, until the relative entropy decreased.

2. Updating the widths

The widths were updated separately in a similar manner (there was only one variable at each node). In order to
have an efficient implementation, we first introduced the following variable

γkj =
σk

σ2
k + σ2

j

(
(xk − xj)2 + (yk − yj)2

σ2
k + σ2

j

− 2

)
, (16)

with which

∂bkj
∂σk

= bkjγkj . (17)

∂D

∂σk
= −2

∑
j

akjγkj + 2
a∗∗
b∗∗

∑
j

bkjγkj . (18)

The second derivative at a given node k was

∂2D

∂σ2
k

= −2
∑
j

akj
σ2
k + σ2

j

εkj − 2
a∗∗
b∗∗

∑
j

bkj
σ2
k + σ2

j

εkj

−4a∗∗
b2∗∗

∑
j

bkjγkj

2

+
2a∗∗
b∗∗

∑
j

bkjγ
2
kj ,

(19)

where we used the notation

εkj = γkj
σ2
j − 2σ2

k

σk
− 2σ2

k

σ2
k + σ2

j

. (20)
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3. Updating the normalizations

Although in many applications it is more natural to keep the normalizations fixed at their original value, it generally
leads to improved representations if we update the hi normalization values as well during the optimization, so we
provide here the details for these steps.

∂bkj
∂hk

=
bkj
hk

, (21)

∂D

∂hk
=

1

b∗∗

2a∗∗bk∗
hk

− 2ak∗
hk

. (22)

The second derivative at a given node k was

∂2D

∂h2k
= −4a∗∗b

2
k∗

h2kb
2
∗∗

+
2ak∗
h2k

. (23)

B. The case of diagonal elements

The above formulas hold for the diagonal bii self-overlap elements as well. However, the bii values do not change
during repositioning the nodes, but only by updating the σi widths or hi normalizations of the Gaussians. Nevertheless,
in practice, special care may be needed for the diagonal elements, describing the probability of the co-occurrence of
an element with itself. If the nodes represent individual entities in A, rather than some properties or groups, then
such self co-occurrences are impossible leading to aii ≡ 0, which can be included in the representation scheme as well,
by requiring bii ≡ 0. While the solution of this case is rather straightforward, for the sake of simplicity we omitted
its detailed study.

III. VISUALIZATION OF LARGER-SCALE EMPIRICAL NETWORKS

In this section we illustrate the applicability of our visualization approach for some empirical networks containing
more than 10, 000 nodes, namely the high energy physics collaboration network [63] and the secure information sharing
over a PGP network [64]. In both cases we consider the largest connected components and provide the number of
nodes and edges accordingly. For simplicity, here we use the Newton-Raphson update for the positions only.

A. Collaboration network: High Energy Physics - Phenomenology

This undirected, unweighted network containing N = 11, 204 nodes and E = 117, 649 edges covers the collaboration
between authors of manuscripts submitted to the HEP-PH (High Energy Physics - Phenomenology) section of the
arXiv e-print server from January 1993 to April 2003 (124 months) [63]. Two authors are connected, if they published
together a paper.

B. PGP network

This undirected, unweighted network shows the secure information interchange through the PGP (Pretty Good
Privacy) algorithm of N = 10, 680 users as nodes nodes, leading to E = 24, 316 edges [64].

IV. ALTERNATIVE FORMULATION OF COARSE-GRAINING

In this section we show a simple, intuitive interpretation of our coarse-graining approach.
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Supplementary Fig. 1: Collaboration network. Visualization of the collaboration in the ”High Energy Physics - Phe-
nomenology” section of the arXiv pre-print server from January 1993 to April 2003, containing N = 11, 204 nodes and
E = 117, 649 edges.

A. Coarse-graining the rows

A grouping or coarse-graining, M , of the rows of the input matrix A can be generally described by the fusion matrix
U as

mij =
∑
k

uikakj , (24)

where u∗k = 1, ∀k. Instead of this reduced size matrix, in our coarse-graining we used a (practically equivalent),
averaged out representation, B, of the original size given by the elements

bij = ai∗
∑
k

uki
mkj

mk∗
. (25)
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Supplementary Fig. 2: PGP network of information sharing. This undirected, unweighted network contains N = 10, 680
nodes and E = 24, 316 edges, connected in a complex, heterogeneous way, as unveiled by our visualization.

By considering partitionings of the rows, without overlaps, each row i had a unique label σ(i) yielding its cluster.
With this notation

bij = ai∗
mσ(i)j

mσ(i)∗
. (26)

By substituting this into Eq. (5), and changing the indices σ(i)→ i we arrive at

D =
∑
ij

aij ln
aij
ai∗
−
∑
ij

mij ln
mij

mi∗
, (27)

which is simply

D = I(R,C)− I(r, C) , (28)

where r means the coarse-grained set of rows, R. Since the I(R,C) ≡ D0 mutual information can be interpreted as
the amount of structural ’signal’ in the original data, D is the amount of lost structural signal during coarse-graining.
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B. Coarse-graining both the rows and columns

The simultaneous coarse-graining of the rows and columns of A was given by the matrix elements

wij =
∑
k

uikvjlakl , (29)

where v∗l = 1, ∀l. The averaged out representation, B, of the original size was given in this case by the elements

bij = ai∗a∗j
∑
kl

ukivlj
wkl

wk∗w∗l
. (30)

By considering partitionings, this can be written in the form of

bij = ai∗a∗j
wσ(k)σ(l)

wσ(k)∗w∗σ(l)
. (31)

By substituting this into Eq. (5), and changing the indices as before, we arrive at

D =
∑
ij

aij ln
aij

ai∗a∗j
−
∑
ij

wij ln
wij

wi∗w∗j
, (32)

which is simply

D = I(R,C)− I(r, c) , (33)

where r (c) means the coarse-grained R (C). Thus, it is true also in this case, that D can be interpreted as the amount
of lost structural signal during coarse-graining. For a graphical representation of these considerations see Fig. 1. of
the Supplementary Information.

Supplementary Fig. 3: Graphical representation of the relative entropy, D, used in the hierarchical coarse-
graining. In the information content diagram the shaded (green) area indicates D, which is found to be the amount of the
lost mutual information between the rows (R) and the columns (C). The coarse-grained rows and columns are denoted by r
and c, respectively. Left: coarse-graining for the rows (R) only. Right: simultaneous coarse-graining of the rows and columns.

V. GREEDY OPTIMIZATION FOR COARSE-GRAINING

Since in a coarse-graining step the B representation matrix is modified, for the remaining steps the D difference
should be updated if at least one member of the pair is neighbor of the fused elements. Although it seems to be
tedious in a later step to measure D always from the original input matrix for a given (k, l) pair, there is a simple
way to calculate this from the actually existing coarse-grained data alone. If Dk and Dl are the values when the rows
(and columns) k and l were formed via fusion (being zero initially), then from the apparent D′ value – measuring the
formation of a bond directly from the coarse-grained rows k and l – we got

D = Dk +Dl +D′ . (34)

This results is valid both for the coarse-graining of the rows and for the simultaneous coarse-graining of both the rows
and columns.
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A. Coarse-graining of the rows

In the following we summarize the numerical details of coarse-graining the rows of a matrix with Nr rows and Nc
columns. For each pair of rows the δ difference of the D relative entropy value for the fusion step could be calculated
independently from the other pairs. Thus after a fusion step only the δ values of the new row with the rest of the rows
were needed to be calculated in O(Nc) time. Since in each step the pair with the lowest δ value was fused, we needed
to select the lowest value before each step, which could be conveniently done with a binary heap data structure in
O(lnNr) time. Altogether we finished in O

(
N2
rNc)

)
time.

B. Coarse-graining of both the rows and columns

In the following we overview the numerical details of the simultaneous coarse-graining of both the rows and columns
of a symmetric matrix with N rows and columns. In this case the fusion of two node pairs is generally not independent,
thus besides calculating the δ values of the new row, all the other values may be needed to be updated. Fortunately,
this can be done in constant time between rows i and j. After the fusion of rows a and b, δij must be increased by
2∆ij , where

∆ij = −wia lnwia − wja lnwja − wib lnwib − wjb lnwjb

+(wia + wja) ln(wia + wja) + (wib + wjb) ln(wib + wjb)

+(wia + wib) ln(wia + wib) + (wja + wjb) ln(wja + wjb)

−(wia + wja + wib + wjb) ln(wia + wja + wib + wjb) .

(35)

Altogether the whole process took O(N3) time.

C. Basic notations for coarse-graining

With the notations mij =
∑
k uikakj , nij =

∑
k aikvjk and wij =

∑
kl uikaklvjl the relevant entropy measures can

be expressed as follows.

S(R) = −
∑
i

ai∗ ln
ai∗
a∗∗

, S(C) = −
∑
i

a∗i ln
a∗i
a∗∗

(36)

S(r) = −
∑
i

mi∗ ln
mi∗

a∗∗
;S(c) = −

∑
i

n∗i ln
n∗i
a∗∗

(37)

S(r, C) = −
∑
ij

mij ln
mij

a∗∗
, S(R, c) = −

∑
ij

nij ln
nij
a∗∗

(38)

S(R,C) = −
∑
ij

aij ln
aij
a∗∗

, S(r, c) = −
∑
ij

wij ln
wij
a∗∗

(39)

From these we could deduce the used measures of mutual information for any X and Y as I(X,Y ) = S(X) +S(Y )−
S(X,Y ).
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[33] Slonim, N., Atwal, G. S., Tkačik, G. & Bialek, W. Information-based clustering. Proc. Natl. Acad. Sci. USA 102, 18297-18302 (2005).
[34] Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc.

Natl. Acad. Sci. USA 104, 7327-7331 (2007).
[35] Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Special Topics 178, 13 -23 (2009).
[36] Zanin, M., Sousa, P. A. & Menasalvas, E. Information content: assessing meso-scale structures in complex networks. Europhys. Lett.

106, 30001 (2014).
[37] Allen, B., Stacey, B. C. & Bar-Yam, Y. An information-theoretic formalism for multiscale structure in complex systems.

arXiv:1409.4708 (2014) (Date of access:15/02/2015).
[38] Lovász, L., Large networks and graph limits, volume 60 of American Mathematical Society Colloquium Publications. American

Mathematical Society, Providence, RI, (2012).
[39] Kullback, S. & Leibler, R. A. On information and sufficiency. Annals of Mathematical Statistics 22, 79-86 (1951).
[40] Hinton, G., & Roweis, S., Stochastic Neighbor Embedding, in Advances in Neural Information Processing Systems, Vol. 15, 833-840

(The MIT Press, Cambridge, 2002).
[41] van der Maaten, L., & Hinton, G., Visualizing Data using t-SNE, Journal of Machine Learning Research, 9, 2579-2605 (2008).
[42] Yamada, T., Saito, K. & Ueda, N. Cross-entropy directed embedding of network data, Proceedings of the 20th International Conference

on Machine Learning (ICML2003), 832-839 (2003).
[43] Grünwald, P. D., The Minimum Description Length Principle, (MIT Press, 2007).
[44] See, e.g., Cover, Th. M. & Thomas, J. A. Elements of Information Theory 1st edn, Lemma 12.6.1, 300-301 (John Wiley & Sons,

1991).
[45] Barnes, J. & Hut, P. A hierarchical O(NlogN) force-calculation algorithm. Nature, 324, 446-449 (1986).
[46] Gansner, E. R., Koren, Y. & North, S. in Graph drawing by stress majorization, Vol. 3383 (ed Pach J.), 239-250 (Springer-Verlag,

2004).
[47] Fruchterman, T. M. & Reingold, E. M. Graph Drawing by Force-Directed Placement, Software: Practice & Experience 21, 1129-1164

(1991).
[48] Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs. Information Processing Letters (Elsevier) 31, 7-15

(1989).
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