
S1 Text: Supplementary Methods

Technical details for population size history inference

PSMC runs on a reduced version of the genome, with consecutive sites grouped into bins of

100 and each bin marked as 1 or 0 depending on whether there is at least one heterozygous

site in the bin or not. Bins can also be marked as “missing” if a certain number of the 100

sites have un-called genotypes (90 in the original PSMC publication). We find that two

aspects of this procedure can affect the overall average heterozygosity of simulated data

generated from a PSMC-estimated population size history. First, different values of the

missing-bin threshold lead to different heterozygosity levels. Second, the PSMC program

accepts a maximum of one heterozygous site per bin, whereas there can in fact be more

than one. This effect is non-linear as a function of TMRCA; since heterozygosity varies

substantially along the genome, the program will systematically underestimate the age of

the most anciently coalesced regions.

To account for these factors, we first use an empirically-determined threshold of 35

un-called sites per 100 to call a bin as missing, which yields a more closely matching final

heterozygosity. Second, we implement a multiple-het-per-bin adjustment, whereby we

modify the PSMC output before using it to create the calibration data, as follows. The

population size history inferred from PSMC consists of discretized time intervals [ti ti+1]

(in coalescent units), with the population size si in each interval telling us how much of the

genome falls within that level of TMRCA (and hence of per-bin heterozygosity). Given

these heterozygosity levels, we use a binomial distribution to scale the times defining the

endpoints from the output units of probability of at least one heterozygous site per 100

bp to the implied expected number of heterozygous sites per 100 bp. Creating calibration

data according to these new values more accurately recapitulates the true distribution of
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heterozygosity levels across the genome, as well as the total genome-wide heterozygosity.

Explicitly, if θ is the original baseline PSMC-inferred ms diversity parameter (per

base), then we define the adjusted times Ti (with T0 = 0) and sizes Si recursively as

Ti = Ti−1 + 2((1− (1− 100θ ∗ (ti + ti−1))
0.01)/2θ − ti−1)

and

Si = si ∗ (Ti − Ti−1)/(ti − ti−1).

As an example, for our eight-genome PSMC inference, the population size trajectory (in

ms notation) is adjusted from

-eN 0.0049 0.1053 -eN 0.0080 0.0562 -eN 0.0118 0.0653 -eN 0.0162 0.1052 -eN 0.0214

0.1860 -eN 0.0277 0.3115 -eN 0.0350 0.4524 -eN 0.0438 0.5549 -eN 0.0542 0.5847

-eN 0.0664 0.5498 -eN 0.0810 0.4846 -eN 0.0983 0.4185 -eN 0.1188 0.3646 -eN 0.1431

0.3257 -eN 0.1718 0.3006 -eN 0.2060 0.2882 -eN 0.2464 0.2880 -eN 0.2944 0.3003

-eN 0.3513 0.3275 -eN 0.4187 0.3726 -eN 0.4987 0.4363 -eN 0.5935 0.5102 -eN 0.7059

0.5755 -eN 0.8391 0.6142 -eN 0.9971 0.6254 -eN 1.1844 0.6360

to

-eN 0.0049 0.1053 -eN 0.0080 0.0564 -eN 0.0118 0.0655 -eN 0.0163 0.1060 -eN 0.0215

0.1874 -eN 0.0279 0.3152 -eN 0.0353 0.4587 -eN 0.0442 0.5653 -eN 0.0549 0.5978

-eN 0.0674 0.5655 -eN 0.0825 0.5012 -eN 0.1006 0.4364 -eN 0.1221 0.3834 -eN 0.1480

0.3464 -eN 0.1789 0.3237 -eN 0.2163 0.3153 -eN 0.2613 0.3210 -eN 0.3161 0.3424

-eN 0.3827 0.3839 -eN 0.4645 0.4517 -eN 0.5655 0.5513 -eN 0.6917 0.6788 -eN 0.8512

0.8168 -eN 1.0565 0.9467 -eN 1.3276 1.0732 -eN 1.6989 1.2608

As can be seen, the correction is negligible for more recent times where the density of het-

erozygous sites is low (and where our test regions have their TMRCA) and only becomes

substantial for the oldest time intervals.
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Windows of measurement for correction factors

As discussed in Methods (“Genotype error”), because our method works by calibrating

the mutation rate against the recombination rate via the local heterozygosity and non-

recombined tract length at our starting points (equivalently, the intercept and slope of

HS(d)), this local behavior is what we are concerned with when correcting for genotype

error, gene conversion, and base content. These processes affect the entire HS(d) curve,

but the calibration data recapitulate the full patterns of heterozygosity in the real data

through the PSMC inference. Thus, once we fit the real-data curve to the calibration

curves, which are ascertained to have similar HS(0), the question becomes how much

this value HS(0) is impacted by various processes. While we would ideally like to derive

the correction parameters directly at the starting points, in practice, we need to define

windows around these points in order to obtain stable counts (as in the case of determining

local heterozygosity in the initial ascertainment step). Aiming for a balance between

capturing the behavior at the midpoint and maintaining high enough statistical power,

we use windows of 10 kb when measuring the recombination rate for the gene conversion

correction, 30 kb when measuring GC content and CpG site fraction for the base content

mutability adjustment, and 50 kb when measuring CpG transition proportion for the

genotype error correction (see below for more details for all three).

Details of genotype error rate estimation

To estimate the genotype error rate, we take advantage of the fact that C-to-T transitions

at CpG dinucleotides are greatly enriched among true mutations as compared to genotype

errors. We assume that genotype errors are equally likely at CpG and non-CpG sites;

while this may not strictly be true, the frequency of CpG sites in the genome is low
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enough (less than 2%) that deviations should only have a minor impact. More generally,

we assume that the a priori probability of observing a genotype error is uniform across

the genome. Because errors are rare, we do not have power to detect local variation in

their rate of occurrence, and instead we aggregate over regions to produce as accurate an

average error rate as possible.

For the fraction of CpG transitions among true heterozygous sites, we use a previous es-

timate of approximately 17.3% based on observation of almost 5000 de novo mutations [8].

Since GC-biased gene conversion results in a decrease in this frequency among older vari-

ants [3, 44], we use our gene conversion adjustment from above (roughly 0.14× 10−8 per

base per generation, with an order of magnitude more mutations introduced than removed

for haplotypes in our TMRCA range), together with an estimated 2:1 transmission bias

for GC bases [21], to estimate a reduction of approximately 0.6% for CpG transition fre-

quency for our test regions. Given that our test regions have TMRCA roughly 10% of

genome-wide average, this value is in line with previous reports of the difference in CpG

transition fraction among de novo mutations versus common polymorphisms [3, 44]. To

account for uncertainty, we use a standard error of 0.1% on the gene conversion correction

(see below).

Using the same eight genomes as for our final µ estimates, with the same filtering and

ascertainment of starting points, we compile the fraction of CpG transitions out of all

heterozygous sites in the regions with local heterozygosity rates of 5–10 per 100 kb, with

one caveat. Because CpG fraction strongly depends on the proportion of CpG sites, and

we find that our test regions have relatively low such proportions (where we define CpG

sites based on the human reference sequence), we truncate the low end of this distribution

and only use test regions with at least 1.24% CpG sites (corresponding to 3551, or 37%,

of the 9626 test regions), such that the overall proportion of CpG sites equals 1.85%, the
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same as in [8]. Additionally, we only use the central half of the 100 kb regions (i.e., 25

kb on either side of the starting points) to represent more precisely the local error rate at

the starting points (while maintaining adequate statistical power). We then compare the

observed CpG fraction (about 14.4%) to the gene conversion-adjusted expectation for true

mutations (about 16.7%), from which we infer the presence of genotype errors at a rate of

1.08×10−5 per base (roughly 1 per 100 kb, or one-seventh of the heterozygous sites in our

test regions). We note that the GC content in the thresholded regions is approximately

42% on average, which would imply a slight decrease in CpG mutability as compared

to the genome-wide average (see base content adjustment below), but to be conservative

(i.e., err on the side of slightly over-correcting), we do not make this adjustment here.

As described in Methods, we apply our correction by multiplying the raw inferred

µ values by (HS(0) − ε)/HS(0), where ε is the error rate. We incorporate this factor

separately for each jackknife replicate, but using the same value of ε throughout, as we

found that re-computing the error rate within the jackknife was unstable. Instead, we

account for our noisy estimate of the error rate by translating our uncertainty in ε into

uncertainty in µ (see Methods). We derive the former by sampling 100,000 random iter-

ations of the three parameters of our error model: the true proportion of CpG mutations

(from a binomial distribution with n = 4933 and p = 855/4933, recapitulating the counts

from [8]), the proportion of CpG mutations in our data (likewise, with counts of 1165 out

of 8108), and the gene conversion adjustment (see above). Taking the mean and standard

deviation of this set, we obtain our estimate of ε = 1.08± 0.28× 10−5. Finally, because of

the relatively uniform preparation of our data, the reasonably large standard error, and

our limited power to detect statistically significant differences, we use this same error rate

for all samples.
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Details of gene conversion correction

As discussed in Methods, the magnitude of the gene conversion effect depends on both the

prevalence of non-crossover gene conversion events and the rate at which they introduce

heterozygous sites. We make use of a recent direct estimate that non-crossover gene

conversion affects 5.9× 10−6 bases per generation [21], which is the product of the rate of

events and their average length (on the order of 100 bases in humans [21, 43]). This rate

is a genome-wide value, however, and the frequency of gene conversion is highly variable

and correlated with local crossover rate [21,45]. We assume that the gene conversion rate

is proportional to the local recombination rate in our genetic map. Because of the way our

starting points are chosen, they tend to lie in the relatively recombination-poor regions

between hotspots, and so for each of our estimates, we multiply the average 5.9×10−6 gene

conversion rate by the ratio of the local recombination rate (measured in 10 kb windows

around the starting points) to the genome-wide average (1.19 cM/Mb, as measured in the

deCODE map [16], which was used in [21]). As an example, for our primary eight-genome

H5–10(d) curve, the starting-point windows cover 96 Mb but only 51 cM, less than half

the average. We note that the differences in average recombination rate per base are only

about 10% between the full 100 kb test regions and the central 10 kb windows and 25%

or less between the central windows and the full super-regions (S2 Table). To capture

noise in the measurement of the local rate, we calculate it separately for each replicate in

the jackknife.

The second component of the gene conversion effect is the probability that a gene

conversion event introduces a polymorphism that we observe as a heterozygous site. A

very simple model for this rate would be that it equals the probability that a randomly

chosen base differs from the homologous base on another chromosome in the population

(from which it might have been copied in the event of a gene conversion at some point
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in the past). This quantity can be estimated simply as the heterozygosity in a diploid

genome. To this basic model, we add two additional details. First, although our test

regions have relatively low heterozygosity (i.e., are relatively recently coalesced), there

is also a chance that new mutations that have accumulated on either haplotype could

be replaced by the ancestral base via gene conversion. For this probability, we use the

heterozygosity at our starting points, HS(0), divided by 2 (because the new mutations

have increased in number since the TMRCA). Second, the probability of mismatch with

another chromosome could change over time, and we also find that because of base content,

correlated coalescent histories, or other factors, the heterozygosity in other genomes is

reduced around our ascertained starting points. For example, other European and East

Asian genomes have heterozygosity 5.5–5.9×10−4 in the 5–10 het regions defined in French

B, roughly 15–25% below the genome-wide average (see S1 Table). We assume an average

value of 5.7×10−4 both for European test genomes (which have the highest heterozygosity)

and other populations, with the exception of Karitiana, for which we instead use their

total genome-wide heterozygosity (5.4× 10−4).

Finally, we assign an uncertainty to our correction, which is incorporated into the

standard errors we report for our real-data mutation rate estimates. For the rate of gene

conversion, we translate the estimated 95% confidence interval of 4.6–7.4 ×10−6 per base

per generation [21] into a standard deviation of 0.7 × 10−6, and for the probability of

introducing a new polymorphism, we use a standard deviation of 10% of the total (i.e.,

5.7± 0.57× 10−4 for most applications).

To test the validity of this approach, we run simulations in which the test data are

generated with gene conversion active, and the rest of the procedure is carried out as

normal, including the correction just described. For this scenario, we use a true mutation

rate of 1.5 × 10−8 per base per generation, and for computational efficiency, we assume
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a uniform rate of gene conversion with f = 3.75 (i.e., 3.75 times the average crossover

rate) and an average tract length of 100 bases. This results in a gene conversion rate of

approximately 4.3× 10−6—about three-quarters of the true rate in humans, but roughly

50% higher than expected for our real-data starting points because of the correlation

with local recombination rate. When applying the final correction, we use the average

heterozygosity over all simulated genomic segments (approximately 6.6 × 10−4) as the

“donor” polymorphism probability.

Details of base content mutability adjustment

Our base content adjustment consists of three elements, which we use to form a ratio of

the genome-wide mutation rate to the average local per-base mutation rate around our

starting points. First, we compare the fraction of CpG sites between our starting-point

regions and the full genome (1.58% after filtering) and use the relative mutation rates

from [8], with uncertainty allowed for sampling noise (ratio of µCpG/µother = 11.2± 0.6).

Similarly, we compare total GC content (40% genome-wide), where non-CpG GC bases

are assumed to be 50% more mutable than AT bases [44] (including uncertainty, 50±15%).

Statistics for our test regions can be found in S2 Table.

Finally, we adjust for the fact that CpG sites are less mutable in regions of high GC

content, due to a combination of strand separation effects and low methylation in CpG

islands. We modified a result from [46], who estimated an exponential dependence of CpG

deamination on local GC content. We (a) used their full CpG transition rates; (b) omitted

the tails of the distribution by restricting to GC content between 30% and 60%; and (c)

fit a linear dependence instead, both because we are using a genome-wide average and

because a linear function appeared to be more accurate in this parameter range. A good

fit was provided by the equation µrel = 1− 2.5∆GC, where µrel is the CpG mutation rate
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as a proportion of the average (at genome-average GC content of 40%), and ∆GC is the

local GC content fraction minus 0.4. Thus, for example, the CpG mutation rate is about

25% higher than average with 30% local GC content and about 50% lower than average

with 60% local GC content. We also found empirically from comparing test regions with

different CpG and overall GC site frequencies that the coefficient of ∆GC appeared to be

approximately 2, in good agreement with the published results. For our final correction,

we used a value of 2.5± 1.0 for this coefficient.

Mutation rate heterogeneity

In much of our theoretical and methodological discussion, we have assumed that µ is a

constant parameter, but in fact different portions of the genome can have different local

mutation rates (see Discussion). To learn about the effects that regional variability in

µ might have on HS(d), we use simulations in which we create data with variability in

the mutation rate throughout the genome. Our goal is to approximate the true level

of variability present in our data on length scales of several tens of kb, which we do

by considering polymorphism rates from populations that are distantly related to those

we are using to compute HS(d). Specifically, for each super-region sequence (i.e., each

independent segment, including flanking regions; see Methods) being simulated, we divide

the length into even thirds and assign a mutation rate for each third proportional to

the frequency of doubleton sites (those with exactly two sampled non-reference alleles)

in that interval among eight full African genomes (two each San, Dinka, Mbuti, and

Yoruba) [24, 28]. The exact rates are chosen in such a way that the overall average rate

over the entire genome is equal to a specified value (e.g., 2.5 × 10−8). When calling a

doubleton, we require at most one individual to be masked (see Methods), and if there

are fewer than 10,000 un-masked sites in any window, we assign the genome-wide average
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rate for that third of the super-region instead.

We note that while this diversity metric does not precisely capture the true variation in

mutation rates across the genome, it should be sufficient for our purposes. The frequency

of doubleton sites in the African individuals depends on the local coalescent trees, although

this particular statistic should be relatively stable (as opposed to, for example, the total

number of polymorphic sites) and will also be smoothed somewhat by considering windows

typically on the order of 100 kb. Second, given a local tree, there is additional Poisson

noise in the observed counts of doubleton mutations. However, because we are using

simulations to gauge the effect of rate variability rather than attempting to add matching

variability to the calibration data, we do not need the local estimates to be exact. This is

especially true because both sources of stochasticity should cause the apparent variability

to be too high rather than too low. Finally, the simulation approach avoids the issue of

potential correlations between the African diversity and our non-African data as a result

of deep shared ancestry.

Additionally, we note that our estimates should not be impacted by multiple-nucleotide

mutation events. It has been estimated that up to a few percent of human point mutations

involve nearby clustered nucleotide changes [26,36,47], meaning that our inferred rate will

correspond to the number of single-base changes per base per generation, rather than the

number of independent mutational events per base per generation. However, this is simply

a question of how the mutation rate is defined (and moreover, the two are very similar),

and all previous mutation rate estimates, to our knowledge, also use the first definition.

Population heterogeneity and admixture

Our basic model assumes that all of the genomes used to calculate HS(d) are drawn from

the same population. Thus, to the extent that our set of individuals are from groups with
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different historical sizes, the real data could have different TMRCA patterns in different

genomes, whereas the calibration data will be based on the population size profile inferred

from the aggregate of all of the samples. A similar phenomenon occurs on a within-

genome scale if the test genomes are admixed, in which case individual chromosomes

consist of alternating blocks derived from each ancestral mixing population. Although we

avoid populations with substantial recent admixture, almost all human populations have

experienced some degree of admixture at some point in their history.

Separately, our estimates could potentially be affected by inter-population differences

in fine-scale recombination rates. However, the “shared” version of the AA map is intended

to apply broadly to non-Africans [17], and it is reasonable to expect that recombination

maps will be similar among non-African populations based on their relatively limited

diversity of PRDM9 alleles [17,48,49].

As with mutation rate heterogeneity, it is difficult to quantify the exact divergence

and admixture parameters for the populations under consideration, and hence we use

empirical and simulation approaches to study their effects on our inferences. First, while

our primary data set consists of a combination of European and East Asian individuals

(see Results), we also apply our analyses to the continental groups separately. This allows

us both to compare results for populations with different admixture histories and also to

compare more homogeneous data sets to the full set with individuals combined from

diverged populations.

Second, we perform simulations in which we apply our method to an admixed pop-

ulation designed to emulate present-day Europeans [33, 50]. We simulate a population

that experienced a 50/50 mixture 200 generations ago between two populations that had

been diverged for 1000 generations. The population sizes are 10,000 in the shared ances-

tral population before a bottleneck beginning 2000 generations ago; then 1000 during the
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bottleneck, which continued until 1000 generations ago (so that the last 200 generations

are separate in the two mixing populations); then 15,000 and 7500 in the two mixing

populations after the bottleneck; and finally 25,000 after the admixture.

Natural selection

A similar issue to within-genome variation in demography and in the mutation rate is that

of heterogeneity in selective effects. Until now we have assumed implicitly that all loci are

neutral with respect to fitness, and thus their TMRCAs follow the distributions implied

by the standard coalescent model. However, if some sites have non-zero effects on fitness,

then two phenomena can result. First, there can be direct selection on new mutations (and

also GC-biased gene conversion, which acts similarly to natural selection [21, 44, 51, 52];

see Methods), causing their frequencies to increase or decrease more than expected due

to drift. This effect should be minor for our data, since we are considering mutational

patterns over relatively short time scales, and if anything, it would likely cause us to

underestimate the true mutation rate (see Discussion). The second phenomenon is linked

or background selection, whereby local genealogies near selected sites will have different

properties from the genome-wide average. In this case, our calibration data, which are

based on the average TMRCA distribution, will differ from the real data, but because our

PSMC inferences still capture the true genome-wide ancestral population size history, the

local variation in this profile will likely only be of second-order importance. Moreover, the

effects of linked selection should be similar to those of rate and demographic heterogeneity,

since different local genealogical properties caused by selection are analogous to different

local mutation rates and/or different local ancestry. Thus, because all three phenomena

lead to changes in local levels of diversity, any overall impact of natural selection should

be captured in our rate-heterogeneity and admixture simulations described above.
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Symmetry of uncertainty

An implicit assumption we make in computing the uncertainty associated with our es-

timates is that this uncertainty is symmetric above and below the mean. To test this

assumption, we used our results for simulated data. For each of our seven simulation

scenarios, we rescaled the 25 independent estimates of µ to have mean 0 and standard

deviation 1, after which we pooled all 175 data points. The resulting set has a slight pos-

itive skewness of 0.14 (see S5 Fig), but this is not statistically significantly different from

0, as the standard deviation of the distribution of sample skewness for 175 observations

from a standard normal is approximately 0.18. Thus, we do not see any strong evidence

that our uncertainty is greater either above or below the mean.
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