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S1 Mathematical Model

S1.1 Numerical simulations:

We initialize the simulations by generating a random ring configuration specifying the radius and N +M
random angular positions of filaments and clusters. The polarities of filaments are also chosen randomly.
We solve the model equations

−
∑
k

ϑik Fs

(
ni −

vi − Vk
Vm

)
+
∑
j

η Aij (vi − vj) = 0 , i = 1 . . . N (1)

∑
i

ϑik Fs

(
ni −

vi − Vk
Vm

)
= 0 , k = 1 . . .M (2)

−
∑
i,k

ϑik Fsτ̄ik

(
ni −

vi − Vk
Vm

)
+

1
2

∑
i,j

η Aijτij (vi − vj) = σ . (3)

under two conditions. The first condition is isometric, corresponding to the fixed, unchanging radius R =
const. In this case, we solve the system Eq. 1 and Eq. 2 for a given R, and then use Eq. 3 to compute
the isometric stress σ. Alternatively, we examine the ring contracting against zero pressure, so σ = 0.
In this case, we solve the whole system Eq. 1-Eq. 3, where in Eq. 3 the right hand side is zero, and thus
compute the evolution of the radius R(t) and respective contraction rate Ṙ. These two cases completely
determine the system behavior in more complex conditions due to the linear force-velocity relation in the
general system.

We simulate the system Eq. 1-Eq. 3 of ordinary differential equations using a time implicit discretiza-
tion and functional minimization method, as illustrated in the Supporting Material. At each step, we
alternate the simulation of movements with the simulation of treadmilling of actin and binding/unbinding
of myosin. Actin treadmilling and myosin kinetics events are simulated at each computational step ac-
cording to the rules described in the Model section. In the simulation, we use the reference set of
parameter values summarized in Table S1 in the Supporting Material, and vary these parameters to
investigate dependence of contractility on the parameters. Relevance of the parameter values to various
experimental systems is analyzed in Discussion.

S1.2 The simplest model for 2 filaments

To build intuition, consider the simplest possible model of a contractile system consisting of only two
anti-parallel actin filaments, s, one myosin cluster, and crosslinking friction between two filament overlaps
(Fig. S1 A).
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Figure S1: A: Schematic representation of a minimal contractile ring with two anti-parallel actin filaments
and myosin located at the overlap of the pointed end sections. B: Minimal contractile ring consisting of
three filaments and one myosin cluster. Notations are discussed in the text.

The angular positions of the center points of the two actin filaments are α1 = α1(t) and α2 = α2(t).
The two actin filaments are anti-parallel; n1 = 1 and n2 = −1. In this scenario, the two filaments overlap
twice, in a region of length L1 limited by their pointed ends, where also the myosin cluster is located,
and in a region of length L2, on the opposite side of the ring, limited by their barbed ends. Myosin is
biased to the pointed ends to illustrate the effective contraction.

Let d(a, b) = mod(a− b, 2π) ∈ [0, 2π) denote the difference between angles measured in the clockwise
direction, and observe that d(a, b)+d(b, a) = 2π. The size of timesteps is denoted by ∆t and n = 0, 1, 2, ...
is the index referring to the sequence of discrete times 0,∆t, 2∆t, .... A simple set of initial data is R0 = 1,
α0

1 = 0, α0
2 = π, the lengths of the two filaments are 3π/2 and we assume that one myosin cluster is

located in the bundle at angle π/2. As the evolution of α1 and α2 is symmetric and since the myosin
cluster moves with the average speed of the two actin filaments it is connected to, the cluster will remain
at the exact center point between these two filaments at π/2.

Using the steepest descent approximation, where, given the past data αn1 and αn2 and Rn, we set

(αn+1
1 , αn+1

2 , Rn+1) = argmin Un[α1, α2, R]

where

U [α1, α2, R] := Fs

(
Rd(α2, α1) +

(Rd(α2, α1)−Rn d(αn2 , α
n
1 ))2

2∆tVm

)
+

+ ηL1
(Rd(α2, α1)−Rn d(αn2 , α

n
1 ))2

2∆t
+ ηL2

(Rd(α1, α2)−Rn d(αn1 , α
n
2 ))2

2∆t
− σ2πR.

The variation reads:

δU [α1, α2, R] = Fs

(
R(δα2 − δα1) + δR d(α2, α1)+

+
(Rd(α2, α1)−Rn d(αn2 , α

n
1 ))

∆tVm
(R(δα2 − δα1) + δR d(α2, α1))

)
+

+ ηL1
(Rd(α2, α1)−Rn d(αn2 , α

n
1 ))

∆t
(R(δα2 − δα1) + δR d(α2, α1))+

+ ηL2
(Rd(α1, α2)−Rn d(αn1 , α

n
2 ))

∆t
(R(δα1 − δα2) + δR d(α1, α2))− σ 2π δR .
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We obtain the variational equations by collecting the coefficients of δα1, δα2 and δR and setting them
to zero. The variational equation resulting from the variation of α2 differs from the one obtained by
varying α1 only by its sign. Actually, the system is underdetermined due to the fact that we didn’t define
any interaction with the environment, and so at any time the system can be rotated freely around its
axis.

We let formally ∆t → 0, so e.g. (αn+1
1 − αn1 )/∆t → α̇1, and we use the following notations: u1 =

Ṙ d(α2, α1) + R(α̇2 − α̇1) and u2 = Ṙ d(α1, α2) + R(α̇1 − α̇2), which satisfy u1 + u2 = 2πṘ. We obtain
the system:

0 = −Fs
(

1 +
u1

Vm

)
− ηL1 u1 + ηL2 u2 (4)

0 = d(α2, α1)Fs

(
1 +

u1

Vm

)
+ d(α2, α1)ηL1 u1 + d(α1, α2)ηL2 u2 − 2π σ , (5)

i.e. two equations for the unknowns u1, u2 = 2πṘ − u1 and σ. By multiplying Eq. 4 by d(α2, α1) and
using d(α2, α1) = 2π − d(α1, α2), we obtain:

0 = −d(α2, α1)Fs

(
1 +

u1

Vm

)
− η L1d(α2, α1)u1 + η L2d(α2, α1)u2

= −d(α2, α1)Fs

(
1 +

u1

Vm

)
− η L1d(α2, α1)u1 + η L2(2π − d(α1, α2))u2

= −2πσ + η L22π u2 ,

where we used Eq. 5. Hence, it holds that u2 = σ
η L2

and therefore u1 = 2πṘ− σ
η L2

which we substitute in
Eq. 4 to obtain the following simple linear equation satisfied by the contractile stress σ and the contraction
rate Ṙ,

2πṘ =
−Fs

Fs

Vm
+ L1η

+ σ

(
1
L2η

+
1

Fs

Vm
+ L1η

)
.

From this we immediately obtain the force for isometric contraction (when Ṙ = 0) and the contraction
rate (when σ = 0):

σ =
Fs

1 + L1
L2

+ Fs/Vm

L2η

and 2πṘ =
−Vm

1 + L1ηVm

Fs

. (6)

As shown in section S1.5, this holds also true for the general model Eq. 1-Eq. 3. The ring contracts if
Ṙ < 0 and expands if Ṙ > 0, but we call Ṙ the contraction rate in all cases to avoid confusion. Similarly,
we call σ the contraction force, though the contraction corresponds to σ > 0, while σ < 0 signifies
expansive force.

These equations show that the rate of change of radius is equal to free myosin velocity diminished
by the crosslinking drag at the same overlap where the myosin cluster is, and by the external force on
the ring mediated by the general crosslinking drag. These formulas will help to understand some of
the numerical results for the general model. They suggest that crosslinking is beneficial for generating
force, but only if myosin and crosslinks are partially segregated, and that crosslinking limits the rate of
contraction.

S1.3 Derivation of model equations using calculus of variations

Solutions of the model equations can be considered as a generalized gradient flow. Consider a given time
step ∆t, an index of time steps n = 0, 1, 2, ... and the time-discretized approximations of the phase space
variables αn := (αn1 , ..., α

n
N ), βn := (βn1 , ..., β

n
M ) and Rn. To avoid confusion when we compute differences

within the ring topology of the cytokinesis ring, instead of the classical subtraction we will write for the
difference of two angles a, b:

a ∼ b = mod(a− b+ π, 2π)− π ∈ [−π, π) . (7)
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A B

C D

Filament center  → pointed endbarbed end ← Filament center  → pointed endbarbed end ←

Filament center  → pointed endbarbed end ← Filament center  → pointed endbarbed end ←

Figure S2: Extension of the numerical experiments shown in Fig. 2 C. A: See Fig. 2 C. B: The contraction
rate of randomly generated actomyosin rings is also correlated to the average relative position of crosslinks
treated as elastic connections between anti-parallel actin filaments (slope of the regression line is 0.24
with p = 0.06%). Rings with a bias of crosslinks towards the barbed (pointed) ends of actin filaments
tend to contract (expand). C: No correlation between contraction and the relative position of myosin
binding sites connecting parallel actin filaments. D: No correlation between contraction and the relative
position of crosslinks connecting parallel actin filaments.
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Figure S3: Comparison of contraction in three scenarios (T-C-: no treadmilling + weak crosslinking,
T+C-: treadmilling + weak crosslinking and T+C+: treadmilling + strong crosslinking). In each sce-
nario we evaluate about 20 simulation runs. A: Smoothed mean value of contraction force vs. time. B:
Smoothed mean rate of contraction (dR/dt) vs. time. C: Radius vs time of the simulation runs without
treadmilling and with weak crosslinking (T-C-). D: Radius vs. time of the simulation runs with tread-
milling and with weak crosslinking (T+C-). E: Radius vs. time of the simulation runs with treadmilling
and with strong crosslinking (T+C+). F: Snapshot at time t = 1400s of the simulation shown in Fig. 5
reveals a ring disruption, which happens frequently in simulations of actomyosin rings which are not con-
tracting, e.g. under isometric conditions, after the ring has undergone polarity sorting. Rings which are
free to expand typically develop actin-free gaps bordered by barbed ends. This leads to the aggregation
of disconnected myosin clusters at the site of disruption. Colors are explained in the legend for Fig. 5
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Figure S4: Contraction driven by F-actin disassembly under pressure load: Comparison of contraction
dynamics in the absence of actin polymerization with pressure-induced shortening of the pointed ends
of 50 % of actin filaments exposed to higher maximal pressure, at a rate of either vd = 0.06 (blue), 0.12
(green) or 0.18 µm/s (red). The remaining 50 % of filaments exposed to lower maximal pressure do not
disassemble. The curves represent mean values of 20 − 40 runs. A: Rings with sufficiently fast pressure
induced disassembly begin to contract soon after starting from a random configuration. However, in the
absence of polymerization and nucleation this is accompanied by fast overall loss of actin. This leads to a
loss of half of the original actin within 100 s (50 s, 33 s). The decrease in thickness is hardly compensated
by contraction. B: Contraction in the absence of polymerizaton but with random nucleation of actin
filaments at a rate which compensates for the fast disassembly of actin.

Description Symbol Value Reference
Number of actin filaments N 30 scaled down from (5) for rapid

simulations
Average length of actin filaments l 6 µm same order of magnitude as (5)
Number of myosin clusters M 30 scaled down from (5) for rapid

simulations
Initial ring radius R0 2.5 µm same order of magnitude as ob-

served (5)
Treadmilling rate vp 0.1 µm s−1 same order of magnitude as ob-

served (5)
Stall force for myosin cluster Fs 5 pN estimated assuming that there

are 20 myosin heads per cluster,
5% duty ratio of myosin motor,
5 pN stall force per head (46, 14)

Load-free myosin velocity Vm 0.5 µm s−1 see (46, 5)
Effective viscous drag due to
crosslinkers

η 15 pN s µm−2 see (30)

Table S1: List of reference parameters
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A similar notation will be used for relative velocities within the bundle,

vi ≈ vj =
d

dt
(R(αi ∼ αj)) . (8)

Observe that it holds that:

a ∼ b = −(b ∼ a) and vi ≈ vj = −(vj ≈ vi) .

Then, implicitly, the time-discretized version of the model equations can be derived from the varia-
tional principle:

(αn+1,βn+1, Rn+1) = argmin U [αn,βn, Rn](α,β, R) , (9)

which relies on the formulation of the following potential energy functional:

U [αn,βn, Rn](α,β, R) = −
∑
k,i

ϑik Fs

(
niR(αi ∼ βk)− (R(αi ∼ βk)−Rn(αni ∼ βnk ))2

2∆tVm

)
+

+
1
2
η
∑
ij

Aij
(R(αi ∼ αj)−Rn(αni ∼ αnj ))2

2∆t
− σ2πR .

We solve the system Eq. 1-Eq. 3 numerically by minimizing this potential energy functional U at each
computational step with respect to variables α,β, R, knowing the values of αn,βn, Rn from the pre-
vious computational step. Values of the variables α,β, R minimizing U [αn,βn, Rn](α,β, R) become
αn+1,βn+1, Rn+1. Note that the solutions are only defined modulo rotations around the ring.

As a consequence, it holds for the variation of U evaluated at (αn+1,βn+1, Rn+1) that:

0 = δU [αn,βn, Rn](αn+1,βn+1, Rn+1) · (δα, δβ, δR) =

= −
∑
i,k

ϑik Fs

(
ni −

Rn+1(αn+1
i ∼ βn+1

k )−Rn(αni ∼ βnk )
∆tVm

)(
Rn+1 (δαi − δβk) + δR (αn+1

i ∼ βn+1
k )

)
+

+
1
2
η
∑
ij

Aij
(Rn+1(αn+1

i ∼ αn+1
j )−Rn(αni ∼ αnj ))
∆t

(Rn+1(δαi − δαj) + δR(αn+1
i ∼ αn+1

j ))− σ2πδR .

Formally, we pass to the limit as ∆t → 0, taking into account that vi ≈
Rn+1αn+1

i −Rnαn
i

∆t and Vk ≈
Rn+1βn+1

k −Rnβn
i

∆t and switch the indices i and j in the expression which involves δαj obtaining:

0 = −
∑
i,k

ϑik Fs

(
ni −

vi ≈ Vk
Vm

)
(R (δαi − δβk) + δR (αi ∼ βk)) +

+
1
2
η
∑
ij

Aij(vi ≈ vj)(2Rδαi + δR(αi ∼ αj))− σ2πδR .

Collecting the coefficients in front of δαi, δβk and δR, we obtain the system of equations:

0 = −
∑
k

ϑik Fs

(
ni −

vi ≈ Vk
Vm

)
+
∑
j

η Aij (vi ≈ vj) , (10)

0 =
∑
i

ϑik Fs

(
ni −

vi ≈ Vk
Vm

)
, (11)

2πσ = −
∑
i,k

ϑik Fs(αi ∼ βk)
(
ni −

vi ≈ Vk
Vm

)
+

1
2

∑
i,j

η Aij(αi ∼ αj) (vi ≈ vj) . (12)
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The contraction force can be introduced as the force per cross-section of the ring, which does not
vary from one cross-section to another. Here we analyze whether this notion can be applied in our model
Eq. 10-Eq. 12.

Recall that αi ∼ αj = αi − αj + τij2π and αi ∼ βk = αi − βk + τ̄ik2π where τij , τ̄ik ∈ Z. Pick one
cross-section located at the angle γ. Without loss of generality assume that all angles α1, ..., αN and
β1, ..., βM are written as real numbers in the interval [γ, γ + 2π). Then Eq. 12 reads:

2πσ = −
∑
i,k

ϑik Fs(αi − βk + τ̄ik2π)
(
ni −

vi ≈ Vk
Vm

)
+

1
2

∑
i,j

η Aij(αi − αj + τij2π) (vi ≈ vj)

and simplifies, using Eq. 10 and Eq. 11, to:

σ = −
∑
i,k

ϑik Fs τ̄ik

(
ni −

vi ≈ Vk
Vm

)
+

1
2

∑
i,j

η Aij τij (vi ≈ vj) . (13)

which confirms system Eq. 1-Eq. 3 in the main text. Only those coefficients τij and τ̄ik are different from
zero and equal to ±1 for which indices i and j correspond to two actin filaments, or one actin and one
myosin filament, which, first, interact, and second, cross the cross-section located at γ. Specifically, in
the case of two actin filaments, the two angular positions αi and αj have to be on opposite sides of the
cross-section such that αi ∼ αj = αi − αj ± 2π. The same has to hold for the angular positions of a pair
of interacting actin and myosin filaments to be taken into account.

Hence, according to Eq. 13, the contraction force σ can be computed by summing up all the forces
transmitted by crosslinks and myosin-actin interactions through a given specific cross-section. For the
interpretation of the original equation Eq. 3, this means that the differences of angles αi ∼ βk and αi ∼ αj
do not play the role of coefficients measuring the contribution of single myosin filaments or crosslinks to
overall stress. Instead, these factors serve as placeholders for either ±1, or zero, restricting that sum to
the contributions at a fixed position along the ring.

S1.4 Cross-linkers as elastic springs

We derive implicitly time-discretized model equations from the variational principle Eq. 9 with the mod-
ified potential energy functional,

U [αn,βn, Rn](α,β, R) := −
∑
k,i

ϑik Fs

(
niR(αi ∼ βk)− (R(αi ∼ βk)−Rn(αni ∼ βnk ))2

2∆tVm

)
+

+
1
2
κcl

∑
ij

ψij
(R(αi ∼ αj)−R0(α0

i ∼ α0
j ))

2

2
− σ2πR .

by replacing the drag friction between actin filaments by a finite number of Mcl crosslinkers, each modeled
as an elastic spring that connects specific binding sites on specific actin filaments and which is charac-
terized by the spring coefficient κcl. To compute one time step we assume that crosslinkers are totally
relaxed initially, and replace expression ηAij/∆t by expression κcl ψij . Here ψij represents the number
of crosslinkers connecting the filaments with indices i and j, and the elastic coefficient of crosslinkers is
chosen to be κcl = 1000 pN µm−1.
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The model equations in this case have the form:

0 = −
∑
k

ϑik Fs

(
ni −

vi ≈ Vk
Vm

)
+

+
∑
j

κcl ψij
(
(Rn+1(αn+1

i ∼ αn+1
j )−R0(α0

i ∼ α0
j ))
)
,

0 =
∑
i

ϑik Fs

(
ni −

vi ≈ Vk
Vm

)
,

2πσ = −
∑
i,k

ϑik Fs(αi ∼ βk)
(
ni −

vi ≈ Vk
Vm

)
+

+
1
2

∑
i,j

κcl ψij(αi ∼ αj)
(
(Rn+1(αn+1

i ∼ αn+1
j )−R0(α0

i ∼ α0
j ))
)
.

S1.5 Linear force-velocity relation between the contraction rate Ṙ and the
contraction force σ.

Here we show that the contraction force σ and the contraction rate Ṙ satisfy a relation of the type
aσ = bṘ+ c for three constants a, b, c. To this end, we substitute:

vi ≈ vj =
d

dt
(R (αi ∼ αj) = Ṙ(αi ∼ αj) +R(t)(α̇i − α̇j)

vi ≈ Vk =
d

dt
(R (αi ∼ βk) = Ṙ(αi ∼ βk) +R(t)(α̇i − β̇k)

(14)

into the model equations. We write the resulting system as:

Fsni
∑
k

ϑik − Ṙ

 Fs
Vm

∑
k

ϑik (αi ∼ βk) +
∑
j

η Aij(αi ∼ αj)

 = (15)

= R(t)

 Fs
Vm

∑
k

ϑik(α̇i − β̇k) +
∑
j

η Aij (α̇i − α̇j)

 ,

−
∑
i

ϑik Fsni + Ṙ
Fs
Vm

∑
i

ϑik(αi ∼ βk) = (16)

= − Fs
Vm

R(t)
∑
i

ϑik(α̇i − β̇k) ,

2πσ = −
∑
i,k

ϑik Fs(αi ∼ βk)
(
ni −

1
Vm

(
Ṙ(αi ∼ βk) +R(t)(α̇i − β̇k)

))
+ (17)

+
1
2

∑
i,j

η Aij(αi ∼ αj)
(
Ṙ(αi ∼ αj) +R(t)(α̇i − α̇j)

)
.

We treat the subsystem Eq. 15-Eq. 16 as a linear system with respect to (α̇1, ..., α̇N , β̇1, ..., β̇k). Observe
that due to the lack of friction against the immobile exterior of the ring, solution vectors are not unique.
Families of solutions are generated by adding arbitrary constants since the system Eq. 15-Eq. 16 only
contains relative velocities. For simplicity, we assume that there only exists one such family of solutions
and we infer that any given representative of that family can be written as (α̇1, ..., α̇N , β̇1, ..., β̇k) =
c1 + Ṙc2 for two vectors c1, c2 ∈ RN+M .

We substitute that solution into Eq. 17, which only contains relative velocities too and which is
therefore invariant with respect to adding a constant rotation angle. As a consequence, equation Eq. 17
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adopts the structure 2πσ = bṘ + c where b and c are constants independent of the external force σ and
the contraction rate Ṙ.

The linearity of the force-velocity relation is a very useful result because it can be used to predict
the ring radius as a function of time if we know the outside pressure on the ring as a function of either
time, or radius. This would require modeling of cellular cytoplasm and cortex, as well as of mechanical
connections between the ring and the rest of the cell.

S1.6 Mechanics of three overlapping actin filaments

To illustrate how the mathematical model Eq. 1-Eq. 3 works from the point of view of elementary
mechanics, we consider the special case of an actomyosin ring consisting of just three actin filaments and
one myosin cluster (Fig. S1 B). We derive explicit expressions for the velocities and contractile stress in
the ring and illustrate the fact that the contractile stress σ given by Eq. 3 does not vary in space and
corresponds to the sum of mechanical forces across an arbitrary cross-section of the ring. For simplicity,
we will analyze the isometric case only, Ṙ = 0.

In the following computations, all angles are within interval [0, 2π). The polarities of the actin
filaments shown in Fig. S1 B are n3 = −n1 = −n2 = 1 and, following the notation introduced in Eq. 7,
we have α1 ∼ α2 = α1−α2, α1 ∼ α3 = α1−α3 as well as α2 ∼ α3 = α2−α3 + 2π. Furthermore we have
α1 ∼ β1 = α1 − β1 and α2 ∼ β1 = α2 − β1 + 2π.

We write vi = R d
dtαi and V1 = R d

dtβ1. The relative velocities Eq. 8 are thus given by v1 ≈ v2 = v1−v2,
v1 ≈ v3 = v1 − v3, v2 ≈ v3 = v2 − v3 as well as v1 ≈ V1 = v1 − V1, v2 ≈ V1 = v2 − V1.

Eq. 11 for the velocity of the myosin cluster is: 0 = Fs

(
−1− v2≈V1

Vm

)
+Fs

(
1− v3≈V1

Vm

)
and it implies

that
V1 =

v2 + v3

2
.

The equations for the velocities of actin filaments Eq. 1, read:

0 = η A12 (v1 − v2) + η A13 (v1 − v3) , (18)

0 = −Fs
(
−1− v2 − v3

2Vm

)
+ η A12 (v2 − v1) + η A23 (v2 − v3) , (19)

0 = −Fs
(

1− v3 − v2

2Vm

)
+ η A13 (v3 − v1) + η A23 (v3 − v2) . (20)

Note that Eq. 18 is the sum of Eq. 19 and Eq. 20 reflecting the fact that solutions are invariant with
respect to rotations. We omit Eq. 20, fix v1 = 0 and obtain from Eq. 18:

v3 = −A12/A13v2 , (21)

which allows to write Eq. 19 as:

−Fs =
(
η A12 + (η A23 + Fs

1
2Vm

) (1 +A12/A13)
)
v2 .

This gives us all filament velocities:v1

v2

v3

 =
Fs(

η A12 + (η A23 + Fs
1

2Vm
) (1 +A12/A13)

)
 0

−1
A12/A13

 .

The contraction force in this case is given by the general equation Eq. 3, which, in the present example,
has the form:

σ = −Fs
(
−1− v2 − v3

2Vm

)
+ η A23 (v2 − v3) . (22)
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Note that subtracting Eq. 19 from Eq. 22, we obtain a much simpler expression for the contractile stress:

σ = η A12 (v1 − v2) . (23)

Another simple expression for the contractile stress can be obtained if we compare Eq. 23 with Eq. 21:

σ = ηA13v3 = ηA13(v3 − v1) . (24)

Observe that if we choose any cross-section of the ring crossing only one filament in the ring, no matter
which one, then from Fig. S1 B, it is clear that the stress acting at the crossed point on the filament is
equal to the drag force from either the overlap between filaments 1 and 2, or between filaments 1 and
3. Equations Eq. 23 and Eq. 24 give respective forces, but we just showed that these two forces are the
same, and also equal to the contractile stress given by the general equation of the model!

Moreover, if we chose a more complex example and have the cross-section bisecting both filaments 1
and 3, as shown in Fig. S1 B, then the intrafilamentous stress in filament 1 there is equal to ηy(v3 − v1),
the stress in filament 3 is equal to ηx(v3 − v1), and the total stress is η(x+ y)(v3 − v1) = ηA13(v3 − v1),
again the same contraction force, regardless of where exactly the cross-section is. Derivation for cross-
sections bisecting the region of the overlaps of filaments 1 and 2 is exactly the same; for cross-sections
bisecting the region of the overlaps of filaments 2 and 3, it is slightly more complex because of the myosin
cluster there, but the result is, again, the same.

S1.7 Compression-induced actin disassembly increases contractility

Compression can develop in actin filaments if, for example, a crosslink holds the pointed end fixed, while
a myosin cluster slides respective barbed end toward the pointed end. We investigate the effect of such
compression assuming the compression-induced severing and disassembly in the following way. At every
discrete time step, we compute the pressure (compression is positive pressure, tension is negative one)
profile along any actin filament taking into account distributed forces from crosslinks and point forces
from myosin. Then, for every actin filament, we determine the maximal pressure along its length which
is never negative since the filament tips are always force free. We select 50% of all actin filaments with
highest peak pressure and increase their depolymerization rate by 0.05 µm/s while the depolymerization
rates of the remaining filaments is decreased by the same value. The polymerization rate of 0.1 µm/s
for all barbed ends does not vary, which conserves the amount of F-actin. The simulation indicates that
increased disassembly under pressure leads to an even stronger positional bias of myosin sites towards
the pointed ends of actin filaments leading to an increase in contraction force and contraction rate, as
compared to actomyosin rings with uniform rates of actin disassembly (Fig. 2 F).

Thus, the mechanical asymmetry assists the contraction in the presence of treadmilling. To test
whether compression-induced severing can also drive contraction in the absence of actin polymerization,
we simulated random actin arrays based on the reference parameter set as listed in Table S1. The rate
of polymerization, however, is set to zero, and the rate of disassembly is given by a positive constant
if a specific actin filament is among the 50 % of filaments under higher pressure, otherwise the rate of
disassembly is set to zero. In Fig. S4 in the Supporting Material we compare the mean values of the radii
for three different rates of pressure-induced actin disassembly. Indeed, the faster the disassembly rate is,
the faster the ring contracts. However, due to the fast rate of disassembly, F-actin is released from the
ring much faster than the rings typically contract causing the F-actin concentration to decrease: a ring
in the simulations dissolves in approximately 100 s, while contractile rings in experiments take hundreds
of seconds to contract (6).

Therefore, we explored the possibility that random nucleation of actin filaments replenishes the ring
by randomly adding filaments at the rate such that the initial number of filaments is roughly conserved.
Furthermore, we assumed that short filaments of a length smaller than 1µm depolymerize irrespective of
the pressure they are exposed to, in order for the ring not to get overloaded with short filaments. As a
result (Fig. S4 B), we confirmed that compression-triggered actin filament severing in combination with
F-actin nucleation can maintain contractility over longer periods of time.
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Movie S1 Contraction of a random actomyosin ring of initial radius R = 5 µm with initially 90 actin
filaments and 90 myosin clusters. Actin filaments are removed at the rate which approximately maintains
a constant actin concentration during contraction. Note that the ring in the movie occasionally bounces
to a larger size, but this is not an actual size increase: at these moments we simply change the length
scale to represent the shrinking ring in detail. Actin filaments with their pointed ends marked by an
arrow in anti-clockwise (clockwise) direction are blue (red). Stars on actin filaments represent myosin
binding sites and myosin clusters connecting them are shown as transversal lines. These are drawn in
green (black) if the connected actin filaments are anti-parallel (parallel).

Movie S2 Contraction of a random actomyosin ring of initial radius R = 5µm with 90 actin filaments
and initially 90 myosin clusters. Actin filaments shorten at the rate which approximately maintains a
constant actin concentration during contraction. Myosin is also released during contraction at the rate
which approximately maintains a constant myosin concentration during contraction. Note that the ring
in the movie occasionally bounces to a larger size, but this is not an actual size increase: at these moments
we simply change the length scale to represent the shrinking ring in detail. Actin filaments with their
pointed ends marked by an arrow in anti-clockwise (clockwise) direction are blue (red). Stars on actin
filaments represent myosin binding sites and myosin clusters connecting them are shown as transversal
lines. These are drawn in green (black) if the connected actin filaments are anti-parallel (parallel).

Movie S3 Contraction force generation in isometric actomyosin ring of radius R = 2.5 µm with 45
actin filaments and 45 myosin clusters. The degree of polarity sorting increases as anti-clockwise and
clockwise actin filaments gradually concentrate at the same position while they keep treadmilling around
the ring. Actin filaments with their pointed ends marked by an arrow in anti-clockwise (clockwise)
direction are blue (red). Stars on actin filaments represent myosin binding sites and myosin clusters
connecting them are shown as transversal lines. These are drawn in green (black) if the connected actin
filaments are anti-parallel (parallel). Blue stars represent myosin filaments detached from actin filaments.
The polarity graph (top right) shows the sum of anti-clockwise filaments counted as +1 and clockwise
filaments counted as −1. Over time, the amplitude of polarity fluctuations increases illustrating the
tendency of the ring to polarize. In synchrony with periodic polarity increase, the distribution of myosin
clusters becomes increasingly inhomogeneous as shown in the histogram (bottom right), with greater
fraction of myosin accumulating to fewer spots.
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