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Figure S1, related to Figure 1: (A) Global correlation of mouse embryonic samples. (B) Stream plot of 16 lineage 
markers for PrE (green) and preimplantation epiblast (blue). Track widths represent the relative expression of the 
gene normalized to the mean expression across the developmental stages displayed. Genes specifically expressed 
in PrE or preimplantation epiblast include all established lineage markers. The early PrE markers Gata6 and Fgfr2 
were expressed from the morula stage, with upregulation of Pdgfra in the early ICM. Late PrE markers, including 
Gata4, Sox7, Foxa2 and Dab2, were specifically upregulated in PrE at E4.5, with Gata6, Fgfr2 and Pdgfra 
expression maintained, consistent with the proposed sequential activation of Gata6, Sox17, Gata4 and Sox7 during 
PrE specification (Artus et al., 2011) and expression patterns observed by others (Chazaud et al., 2006; Gerbe et 
al., 2008; Guo et al., 2010; Ohnishi et al., 2014). Conversely, preimplantation epiblast cells exhibited robust 
expression of epiblast-specific genes, including Sox2, Nanog, Klf2, Bmp4 and Fgf4 (Guo et al., 2010; Kurimoto et 
al., 2006; Tang et al., 2010a). 
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Figure S2, related to Figure 2: (A) GO enrichment for stage-specific expression in early mouse development. (B) 
Dynamically expressed genes during epiblast and PrE specification. Selected transcription factors, signaling 
pathway components and epigenetic regulators are shown to the right, with a subset of lineage markers in bold. 
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Figure S3, related to Figure 3: (A) Diffusion map of mouse embryonic samples and ESC cultured in 2i/LIF, based 
on the full transcriptome; DC = diffusion coefficient. (B) Global gene expression and hierarchical clustering of 
mouse embryonic samples and ESC in 2i/LIF. (C) Heatmap and hierarchical clustering based on the expression of 
dynamically regulated genes. The subgroup shared by ESC and E4.5 epiblast is marked in orange. 
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Figure S4, related to Figure 4: (A) Global expression and hierarchical clustering of mouse embryonic samples, 
ESC cultured in 2i/LIF and diapaused preimplantation epiblast. (B) GO term enrichment analysis based on up- and 
downregulated genes in normal preimplantation versus diapaused epiblast. (C) Expression of pluripotency markers 
in mouse embryonic samples, ESC in 2i/LIF and diapaused epiblast. 
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Figure S5, related to Figure 5: (A–C) Immunosurgery on marmoset blastocysts. Phase contrast images of (A) 
marmoset blastocyst after complement reaction, (B) roughly separated ICM and trophectoderm and (C) cleanly 
separated ICM after dissociation with a fine Pasteur pipette. (D) Manual quantification of NANOG, OCT4 and 
GATA4-positive cells from whole-mount immunostainings of in vivo derived, late marmoset blastocysts; n = number 
of embryos. (E) SOX2 locus in the marmoset reference genome. Gene boundaries are annotated incorrectly with 
respect to transcribed sequence determined by RNA-seq. (F) A minority of genes such as ZFP42 (REX1) were not 
accurately quantified due to pronounced discrepancies between marmoset gene loci and sequencing data that 
remained unreconciled by automated reannotation. (G) Read coverage for genes >3 kb illustrating 3ʹ′ bias and 
threshold implemented to restrict transcript length (dashed line). (H) Principal component analysis of marmoset 
embryonic samples. (I) Pathway expression scores for the 10 most up- and downregulated signaling pathways 
(KEGG). Scores were calculated by summing FPKM values of individual pathway components followed by 
normalization for pathway size. (J) Expression of pluripotency and lineage markers in mouse and marmoset early 
and late ICM samples. The mouse late ICM sample was generated by in silico pooling of RNA-seq reads from 
individual E4.5 EPI and E4.5 PrE samples at a ratio of 1:1. This reflects the ratio of epiblast to PrE cells in the late 
marmoset ICM (D) to allow comparison of late ICM in both species. 
  



 
 
Figure S6, related to Figure 6: Expression data for (A) TGFß/NODAL, (B) WNT, (C) FGF and (D) BMP pathways.  
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Figure S7, related to Figure 6: (A–D) Comparison of manual and automated analysis of whole-mount embryo 
immunofluorescence confocal images. Late mouse blastocysts were stained for Nanog (epiblast), Gata6 (PrE), 
Cdx2 (trophectoderm) and DAPI (total cell number) and quantified by (B) manual counting of confocal Z-projections 
and (C) automated object quantification using Volocity. (D) Manual versus automated quantification; error bars = 
standard deviation. (E) Confocal Z-projection of a DMSO-treated (control) marmoset embryo stained for NANOG, 
GATA6, CDX2 and DAPI by immunocytochemistry. (F) Automated object quantification for the embryo shown in 
(E). The total number of cells identified is indicated in the lower left for each channel. (G) Quantification of total cell 
number (DAPI) from embryos cultured with and without inhibitors. Outliers are indicated with a cross. P-values 
were determined by one-way ANOVA with Tukey HSD testing. No significant differences were observed. (H) 
Single-plane confocal section of NANOG, CDX2 and GATA6 in inhibitor-treated marmoset embryos. (I) 
Fluorescence intensities of GATA6-positive cells in one representative embryo per experimental group. Bars 
represent individual cells. NANOG and CDX2 signal did not exceed background fluorescence in cells marked 
GATA6-only (black). For a cell to qualify as such, NANOG and CDX2 levels were no greater than background.  
 
 
  



Table Legends 
 
 
Table S1, related to Figure 1: Mouse gene expression levels for the developmental stages and samples analyzed 
in fragments per kilobase of exon per million fragments mapped (FPKM). 
 
Table S2, related to Figure 2: Dynamically expressed genes in mouse embryonic lineages during development 
from the E2.5 morula stage to E5.5 postimplantation. 
 
Table S3, related to Figure 2: Constitutively expressed genes in mouse development from morula to 
postimplantation stages. 
 
Table S4, related to Figures 2 and 4: Mouse gene expression modules for the developmental stages and 
samples analyzed. Modules were derived by hierarchical clustering of scaled expression values. 
 
Table S5, related to Figure 2: Genes differentially expressed between pairs of conditions in mouse embryonic 
development, diapaused epiblast and cultured ESC. 
 
Table S6, related to Figure 5: Marmoset gene expression levels over the developmental stages analyzed in 
fragments per kilobase of exon per million fragments mapped (FPKM). 
 
Table S7, related to Figure 5: Comparison of orthologous genes in mouse and marmoset ICM. Embryo-matched 
lineage-specific data from mouse epiblast and PrE samples were merged for compatibility with marmoset ICM. 
 
  



Extended Experimental Procedures 
 

Mouse strains 

Embryos were generated by intercrosses between Pdgfra::GFP (Hamilton et al., 2003) and strain 129 estrus-

checked females. Experiments were performed in accordance with EU guidelines for the care and use of laboratory 

animals, and under authority of UK governmental legislation. Use of animals in this project was approved by the 

ethical review committee for the University of Cambridge, and relevant Home Office licences are in place. 

 

Mouse embryo staging and sample acquisition 

Staging of mouse embryos was based on the assumption that, on average, mating occurred at midnight so that at 

midday embryos were assigned E0.5. Embryos were collected at the relevant stages from the oviduct or uterus in 

M2 medium (Sigma). Embryos were carefully matched by morphology and stage of development. An important 

aspect of this study was to profile freshly harvested, in vivo developed embryos. Consequently we avoided embryo 

culture and processed embryos as quickly as possible. 

At the 8-cell stage embryos were flushed from the oviducts at 11.00am (just before E2.5). Embryos selected for 

precompaction with clearly separable eight individual cells. Zona pellucidae were removed with acidic Tyrode’s 

solution (Sigma), cells were dissociated by brief exposure (<5min) to a 1:1 mixture of 0.025% trypsin plus EDTA 

(Invitrogen) and 0.025% trypsin (Invitrogen) plus 1% chick serum (Sigma). All individual samples (E2.5 MOR 1–3) 

contain 8 cells from one embryo. 

Early blastocyst embryos represent the 32-cell stage harvested at 10.00am (prior to E3.5). For all early ICM 

samples blastocoel expansion was less than 50% of the total volume. Zona pellucidae were removed with acidic 

Tyrode’s solution (Sigma), ICM were isolated by immunosurgery (Solter and Knowles, 1975, see below) and any 

residual trophectoderm was thoroughly removed by repetitive manual pipetting. ICM were dissociated by exposure 

(5–10min) to a 1:1 mixture of 0.025% trypsin plus EDTA (Invitrogen) and 0.025% trypsin (Invitrogen) plus 1% chick 

serum (Sigma). All cells were dissociated into singletons. Individual cell numbers of 12, 14 and 16 were processed 

immediately for RNA-seq. 

Late blastocyst embryos were collected at E4.5 (11.00am). EPI and PrE have fully segregated at this stage 

(Plusa et al., 2008, Grabarak et al., 2012) and PrE cells can be visualized with the Pdgfra:GFP reporter which we 

used as an additional criterion to classify late blastocysts. Immunosurgery and single cell dissociation were carried 

out as described for early ICM with a slightly longer incubation time in dissociation buffer of 10–15min. Pulled glass 

capillaries of decreasing inner diameter were used to gently dissociate the ICM into single cells. We obtained 40–

50 cells per embryo of which 10–20 remained in duplets or triplets. The vast majority of cells were either negative 

or strongly positive for Pdgfra-GFP. Single cells were sorted manually under a fluorescence dissection microscope 

based on GFP expression. Individual samples (e.g., E4.5 EPI) contained 10–20 single cells. 

Postimplantation epiblast samples were isolated by manual dissection between 12.00–3.00 pm (just after E5.5). 

Embryos used had developed a cavity and the epiblast had formed an epithelium. Extraembryonic ectoderm was 

first removed with a wide mouth-controlled pipette, and the visceral endoderm was mechanically separated by 

drawing the embryo portion through a second pipette with a narrower aperture. Postimplantation epiblast samples 

were confirmed to be free of GFP-positive visceral endoderm. Epiblast dissociation was carried out as described 

for early ICM with a slightly longer incubation time of 10–15min. For individual samples (e.g., E5.5 EPI), 20 single 

cells were randomly selected and processed for RNA-seq. 

  



Diapause induction 

Embryonic diapause was induced by surgical removal of both ovaries from female mice on the morning of the third 

day of pregnancy (E2.5) without subsequent progesterone treatment. Diapaused embryos were flushed 4 days 

later and the epiblast was isolated in the same manner as for E4.5 embryos (see below). 

 

Marmoset embryo collection  

Marmoset blastocysts were staged based on embryonic day, diameter and blastocoel formation. Zona pellucidae 

were removed using acidic Tyrode’s solution (Sigma) and embryos were subjected to immunosurgery as described 

below, using a custom rabbit polyclonal anti-marmoset antibody. Dissociation of marmoset ICM was carried out as 

for mouse embryos at the late blastocyst stage. Animals were obtained from self-sustaining colonies and housed 

according to standard husbandry guidelines. Protocols and institutional regulations for the care and experimental 

use of marmosets were strictly followed. Experiments at the DPZ were conducted under licence number AZ 

33.42502–066/06. Experiments using marmosets at the CIEA were approved by the animal research committee 

(CIEA: 11028) and performed in compliance with guidelines set forth by the Science Council of Japan. 

 

Immunosurgery  

Mouse (E3.25 and E4.5) and marmoset blastocysts were processed by immunosurgery based on previously 

described procedures (Nichols et al., 1998; Solter and Knowles, 1975). Embryos were incubated for 15min in a 1:5 

dilution of anti-mouse (Sigma) or anti-marmoset (in-house) rabbit serum in N2B27 medium, washed in N2B27 and 

incubated a further 15min in a 1:5 dilution of rat serum for the complement reaction. Embryos were transferred to 

N2B27 and incubated a further 15min for efficient cell lysis. ICM were dissociated from residual trophectoderm with 

a pulled Pasteur pipette of internal diameter just wider than the ICM. 

 

Single cell dissociation 

Dissociation of morula, ICM and postimplantation epiblast cells was performed in a 1:1 mixture of 0.025% trypsin 

plus EDTA (Invitrogen) and 0.025% trypsin (Invitrogen) plus 1% chick serum (Sigma). Morulae and early ICM were 

incubated for 5–10min at 37°C, and E4.5 mouse ICM and postimplantation epiblasts were incubated for 10–15min. 

Explants were subsequently washed in N2B27 supplemented with 10µM HEPES and 1.5mg/ml BSA (Gibco) and 

dissociated in a small drop of medium using blunted microcapillaries pulled to an inner diameter large enough to 

accommodate approximately 2–3 cells. 

 

Embryonic stem cell culture  

E14TG2a cells derived from mouse strain 129/Ola (Hooper et al., 1987) were used as a reference ESC line and 

cultured in 2i/LIF medium on gelatin (Ying et al., 2008). N2B27 (1:1 DMEM/F-12 and Neurobasal media, N2 (in-

house) and B27 (Gibco) additives, 2mM L-glutamine and 100µM ß-mercaptoethanol) was supplemented with 1µM 

PD0325901, 3µM CHIR99021 and 10ng/ml LIF (in-house). Cells were dissociated by conventional methods in bulk 

culture. Single-cell suspensions were prepared and 20 cells were manually selected with a blunt microcapillary. 

 
Immunofluorescence and cell counts 

Embryos were stained as previously described (Nichols et al., 2009). Primary antibodies used were: Nanog 

(ReproCell RCAB0002P-F (1:300 dilution) or Cell Signaling Technology 4893 (1:400)), Gata4 (Santa Cruz sc1237 

(1:100)), Oct4 (Santa Cruz sc8628 (1:300)), Gata6 (R&D AF1700 1:100)), Cdx2 (Biogenex MU392A 1:200)), Klf4 

(Santa Cruz sc20691 (1:400)), Tfcp2l1 (R&D AF5726 (1:400)), Sox17 (R&D AF1924 (1:100)) and E-cadherin 

(Abcam ab15148 (1:200)). Cell counts from individual embryos were used for one-way ANOVA with Tukey HSD 

testing to identify significant changes between any two means (Figures 6C and 6D). 



Sample processing and RNA-seq library construction 

cDNA synthesis from small numbers of cells was carried out using whole-transcriptome preamplification (Tang et 

al., 2010b; Tang et al., 2009). Typically 10–20 cells (8 for morulae) were transferred immediately into 4.5µl single-

cell lysis buffer under a dissection microscope and snap frozen on dry ice. cDNA was synthesized and amplified for 

20 cycles using a single-temperature protocol in a Veriti 96-well thermocycler (Applied Biosystems). cDNA samples 

were sheared by ultrasonication on a Covaris S2 for 80s with parameter settings: Duty Cycle 10, Cycles per Burst 

200, Intensity 4. Samples were ethanol precipitated and resuspended in Tris buffer for subsequent enzymatic 

modifications. End repair was carried out with T4 DNA polymerase and T4 polynucleotide kinase (New England 

Biolabs) and samples were purified with Ampure XP paramagnetic beads (Beckman Coulter). Blunt-end, 3ʹ′-

phosphorylated products were 3ʹ′-adenylated with exo- Klenow fragment in the presence of dATPs (New England 

Biolabs), purified with Ampure beads, and ligated to sequencing adapters (Illumina and Bioo Scientific) by T4 DNA 

ligase at 20°C for 30 minutes. PCR amplification of library constructs was carried out with AccuPrime DNA 

polymerase (Invitrogen) for 13 cycles on a Bio-Rad C1000 thermocycler using denaturing and annealing conditions 

optimized for even A/T vs. G/C processing (Aird et al., 2011). Molarity and size distribution of sequencing libraries 

was assessed by DNA 1000 microfluidic chips on the 2100 Bioanalyzer (Agilent). Sequencing was performed in 

100bp paired-end format on the Illumina HiSeq 2000 at high read depth (up to 250M per sample). 

 

RNA-seq alignment and quantification 

Remaining preamplification adapters were removed prior to alignment using AdapterRemoval (Lindgreen, 2012) at 

both 3ʹ′ and 5ʹ′ ends of reads. Sequencing reads were aligned to the GRCm38 assembly of the mouse genome 

(mm10) and the CalJac3.2.1 assembly of the common marmoset genome using GSNAP (Wu and Nacu, 2010), 

provided with splice junction annotation from Ensembl release 70 (Flicek et al., 2014). Only read pairs with unique 

mapping to the genome were considered further. Transcript quantification was performed with htseq-­‐count, part of 

the Bioconductor HTSeq package (Anders et al., 2014), using gene annotation from Ensembl release 70. Samples 

were corrected for sequencing library size using the size factors computed by the DESeq package (Anders and 

Huber, 2010) and normalized for gene length to yield FPKM values. The cDNA preamplification protocol exhibits 

limited transcript processivity from the 3ʹ′ end (Tang et al., 2010a); we therefore restricted transcript lengths to 2500 

bp for longer genes to mitigate this effect (Figure S5G). Global analyses, such as sample clustering and diffusion 

maps, were based on variance-stabilized counts computed by DESeq. In addition to the dataset described here, 

two previously published mouse E3.5 preimplantation epiblast samples produced as part of the same experiment 

and under identical conditions were analyzed in this study (ArrayExpress E-MTAB-2555, Boroviak et al., 2014). For 

comparison with published single-cell and bulk RNA-seq data, sequencing reads were obtained from the European 

Nucleotide Archive (Pakseresht et al., 2014) and processed as described above. 

 
Marmoset gene reannotation 

We observed that annotation of marmoset genes was often incorrect at the 3ʹ′ UTR (Figure S5E). As a result, 

documented 3ʹ′ end bias introduced by cDNA preamplification (Kurimoto et al., 2006, Tang et al., 2010b) led to 

underestimation of expression levels of affected genes. To address this, marmoset transcripts were assembled de 

novo from RNA-seq data using Trinity (Grabherr et al., 2011). Transcript contigs were then mapped to the 

marmoset reference genome and transcriptome sequences with BLAT (Kent, 2002). Newly-assembled transcripts 

that could be uniquely assigned to a known gene were incorporated into the genome annotation as a new isoform. 

To avoid false positives, regions of read coverage near annotated genes that could not be linked to the gene by an 

assembled transcript were not included in the reannotation (Figure S5F). This revised annotation was used to 

quantify the expression of marmoset genes and is provided with ArrayExpress record E-MTAB-2959. 



Identification and clustering of dynamically regulated genes 

Differential expression analysis was performed with DESeq. Since the expression of many genes changes over the 

developmental time course profiled, dispersions were estimated using fit type ‘local’. Dynamically regulated genes 

for a set of embryonic stages were defined as genes that were 1) differentially expressed (FDR-corrected P-value < 

0.05) between any two stages and 2) robustly transcribed (mean FPKM>10) in at least one. To identify clusters of 

genes that exhibit similar expression patterns, FPKM values were first scaled relative to the mean expression of the 

gene across all samples. Hierarchical clustering was then performed using the hclust algorithm in R. Clusters were 

extracted and manually classified into modules corresponding to the stage(s) of predominant expression. GO 

category and KEGG pathway enrichment analysis on differentially expressed and clustered genes was performed 

using the GOstats R package (Falcon and Gentleman, 2007). Genes were designated transcription factors if they 

were contained in a curated list of transcription factors (Vaquerizas et al., 2009) or were annotated with the GO 

term ‘regulation of gene transcription (GO:0010468). Epigenetic regulators correspond to categories ‘chromatin 

modification’ and ‘regulation of gene expression, epigenetic’ (GO:0016568, GO:0040029), and signaling molecules 

to ‘signaling’ (GO:0023052). 
 

Cross-species analysis 

For comparative analyses between mouse and marmoset, orthologous genes were matched using data from 

Ensembl release 70 (Flicek et al., 2014). To obtain a comprehensive gene set, annotated one-to-one mouse-

marmoset orthologs were supplemented with one-to-one marmoset-human orthologs corresponding to the mouse 

gene symbol. To render marmoset ICM samples comparable to the mouse data, EPI and PrE expression profiles 

from the same mouse embryos were pooled in silico at the observed marmoset ratio of 1:1 (Figure S5D). 

Expression data from mouse and marmoset orthologs are provided in Table S7. 
 

Pathway analysis 

Differential pathway analysis was performed for all 229 curated KEGG pathways. High-level comparative analyses 

between embryonic stages and species were based on pathway scores, defined as the sum of expression values 

of all components divided by the number comprising each pathway. For more detailed analyses, expression values 

were mapped onto pathway nodes centered around the mean expression of all genes (FPKM=24), with FPKM=0 

and FPKM=100 as extremes, using PathVisio (Kutmon et al., 2015). For regulatory network analysis we produced 

a condensed version of PluriNetWork, curated based on published interactions (Som et al., 2010), by exclusively 

considering dynamically expressed genes. Dynamic expression of individual pathway components was determined 

by normalizing log-transformed expression values relative to the mean expression of the gene across all embryonic 

stages. A gene was deemed active at a given stage if relative expression was positive. Similarly, a network edge 

was considered active if both its source and target nodes were active. Cytoscape (Smoot et al., 2011) was used for 

network visualization. 
 

Confocal imaging and analysis 

Images were acquired with a Leica TCS SP5 confocal microscope. Optical section thickness ranged from 1–3µm. 

Images were processed using Leica software, Imaris, Volocity and ImageJ. Parameters for object identification 

were: guide size 500µm3, separate objects 500 µm3 and exclude objects larger than 500µm3. Thresholds for 

background fluorescence (Gata6:45, Nanog:25, Cdx2:35, DAPI:20) were empirically determined to recapitulate 

manual cell counts in DMSO control embryos (Figures S7A–D). For two IWP2-treated embryos the threshold for 

Nanog was increased to 50 due to very bright signal to ensure accurate quantification of cell nuclei. 	
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