ScienceAdvances

AAAS

www.advances.sciencemag.org/cgi/content/full/1/7/e1500315/DC1

Supplementary Materials for

Structural basis of Lewis^b antigen binding by the *Helicobacter pylori* adhesin BabA

Naim Hage, Tina Howard, Chris Phillips, Claire Brassington, Ross Overman, Judit Debreczeni, Paul Gellert, Snow Stolnik, G. Sebastiaan Winkler, Franco H. Falcone

> Published 14 August 2015, *Sci. Adv.* **1**, e1500315 (2015) DOI: 10.1126/sciadv.1500315

This PDF file includes:

Materials and Methods

Fig. S1. Glycan symbolic representations of the fucosylated histo-blood group antigens that act as BabA receptors.

Fig. S2. Schematic illustration of the predicted domain structure of BabA.

Fig. S3. Alignment of BabA J99 and SabA 26695 protein sequences annotated with secondary structure elements.

Fig. S4. Superimposition of BabA from apo and cocrystal structures.

Fig. S5. Secondary structure and thermal stability of BabA and BabA variants.

Fig. S6. Type 1 and type 2 fucosylated histo-blood group antigen molecular models.

Fig. S7. Rainbow representation of apo-BabA.

Table S1. X-ray diffraction data collection and refinement statistics.

Table S2. Thermodynamic parameters of BabA:Le^b interaction at pH 4.5 and 7.4.

Table S3. Binding affinity of BabA to various histo-blood group antigens.

Table S4. Oligonucleotides used in BabA cloning and site-directed mutagenesis. References (6, 22, 46, 47)

Supplementary Materials and Methods

Secondary structure analysis

Circular dichroism spectra of BabA and BabA variants (containing N206A and D233A/S244A substitutions) was measured using a J-810 Spectropolarimeter (Jasco). Protein concentration was 1 μ M in a buffer containing 20 mM tris-Cl (pH 7.4) and 3 mM NaCl. Measurements were made at 25°C in a quartz cell with a 0.1 cm pathlength at a data pitch of 0.5 nm and scanning speed of 100 nm/min. Reported spectra are baseline-corrected for buffer alone and averaged from three independent scans.

Thermal stability analysis

For differential scanning fluorimetry experiments, SYPRO Orange dye ($20\times$ final concentration) was added to 10 μ M BabA and BabA variants (containing N206A and D233A/S244A substitutions) in a buffer containing 20 mM Tris-Cl (pH 7.4) and 300 mM NaCl. Changes in fluorescence were measured across an increasing temperature gradient from 25°C to 60°C using a LightCycler 480 II (Roche) at a ramp rate of 0.01°C/s. Primary data points from three independent experiments were fitted to a 6-parameter unfolding equation (46) using the Prism analysis package (GraphPad Software).

Fig. S1. Glycan symbolic representations of the fucosylated histo-blood group antigens that act as BabA receptors. The terminal glycan epitopes of the secreted ABH/Lewis antigens that act as receptors for BabA in the gastric mucosa are shown. Histo-blood group antigens are produced after the fucosylation of a type 1 lacto series core chain by an α 1,2-fucosyltransferase (Se), which generates the H-1 antigen. This oligosaccharide is modified by a GalNAc-transferase in blood group A individuals and Gal-transferase in blood group B individuals, thereby producing the A-1 and B-1 antigens, respectively. All ABH antigens are subjected to further fucosylation by an α 1,3/4-fucosyltransferase (Le), which produces Le^b, A-Le^b and B-Le^b in blood group O, A and B individuals, respectively (6).

Fig. S2. Schematic illustration of the predicted domain structure of BabA. Indicated are the handle (blue) and head regions (dark magenta), and the crown β -strand unit (gold) of the extracellular domain. BabA is anchored to the *H. pylori* outer membrane through a putative C-terminal transmembrane β -barrel domain.

α	-1	N		

BabA		000 00000000000000000000000000000000000	Q
SabA		<u>000</u> 000000000000000000000000000000000	Q
		1 60)
BabA	J99	EDDGFYTSVGYQIGEAAQMVTNTKGIQDLSDRYESLNNLLNRYSTLNTLIKLSADPSAIN	V
SabA	26695	EDNGFFVSAGYQIGEAVQMVKNTGELKNLNEKYEQLSQYLNQVASLKQSIQNANNIELVN	V
		1 60)
		::.*.******************************	k

α-1

BabA	000000000000000000000000000000000000000
SabA	<u> 000000000000000000000000000000000000</u>
	61 118
BabA J99	AVRENLGASAKNLIGDKANSPAYQAVLLAINAAVGFWNVVGYVTQCGGNANGQKSISS
SabA 26695	SSLNYLKSFTNNNYNSTTQSPIFNAVQAVITSVLGFWSLYAGNYFTFFVGKKVGDSGQ
	61 118
	· · * · ··* · ··· · * · · · · · · · · ·

	β-1	α-1a
BabA		000000000000000000000000000000000000000
SabA	Q	000000000000000000000000000000000000000
	119	178
BabA J99	KTIFNNEPGYRSTSITCSLNGHSPGYYG	PMSIENFKKLNEAYQILQTALKRGLPALKENN
SabA 26695	PASVQGNPPFKTIIENCSGIENCAMD	QTTYDKMKKLAEDLQAAQTN
	119	164
	: .: :* ::: .**	: :::*** * * **

β-2

BabA		
SabA		000000000000000000000000000000000000000
		179 238
BabA	J99	${\tt GKVNVTYTYTCSGDGNNNCSSQVTGVNNQKDGTKTKIQTIDGKSVTTTISSKVVDSRADG}$
SabA	26695	SATKGNNLCALSGCAATDSTSNPPNSTVSNALNLAQQLMDLIANT
		165 209
		····** *: · ······ · ·*·· · ····* *:
		α-1 b
BabA		
SabA		
		230 208

		239	298	3
BabA J99	9	NTTGVSYTEITNKLEGVPDSAQALLAQASTLINTINNACPYFHASNSSEANAPK	FSTTT	5
SabA 266	695	-KTAMMWKNIVISGVSNTSGAITSSTN	IYPT	-
		210	237	7
		.*.: ::* :** ::: : : :	: *	

α-2

BabA SabA		000000 00000000000 0000000000000000000
		299 358
BabA	J99	KICGAFSEEISAIQKMITDAQELVNQTSVINEHEQTTPVGNNNGKPFNPFTDASFAQGML
SabA	26695	-QYAVF-NNIKAMIPILQQAVTLSQSNHTLSASLQAQATGSQTNPKFAKDIY
		238 287
		··* ::*·*: :: :* * * :·· *: .*·: *: .**: *: .**:
		α-3
BabA		000000000000000000000000000000000000000
SabA		<u>9999999999999999999999999999999999999</u>
		359 418
BabA	J99	ANASAQAKMLNLAEQVGQAINPERLSGTFQNFVKGFLATCNNPSTAGTGGTQGSAPGTVT

BabA	J99	ANASAQAKMLNLAEQVGQAINPERLSGTFQNFVKGFLATCNNPSTAGTGGTQGSAPGTVT		
SabA	26695	TFAQNQKQVISYAQDIFNLFNS-IPAEQYKYLEKAYLKIPNAGS	TPTNP-	
		288	335	
		• * * • • • • • • • * * * * * * * * * *	*	

	α-4	α-C1
BabA	000000000000000000000000000000000000000	000000000000000000000000000000000000000
SabA	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	419	478
BabA J99	TQTFASGCAYVGQTITNLKNSIAHFGTQEQQIQQAENIADTLVN	NFKSRYSELGNTYNSIT
SabA 2669	5YR-QVVNLNQEVQTIKNNVSYYGNRVDAALSVARDVYN	NLKSNQAEIVTAYNDAK
	336	388
	• • * • • • * • • * • • * • • * • • *	*:**. :*: .:**

		β-C	α-C2
BabA	000000	$ \longrightarrow $	000000000
SabA	000000		
	479		534
BabA J99	TALSNIPNAQSLQN-A	VSKKNNPYSPQGIDTNYYL	NQNSYNQIQTINQELGRNPFRK
SabA 26695	TLSEEISKLPHNQVNTKDI	VTLPYDKNAPAAGQSNYQI	NPEQQSNLNQALAAMSNNPFKK
	389		448
	:*::*. * :	*: : :* . ::** :	* :::: :***:*

BabA		
SabA		
		535 594
BabA	J99	VGIVSSQTNNGAMNGIGIQVGYKQFFGQKRKWGARYYGFFDYNHAFIKSSFFNSASDVWT
SabA	26695	VGMISSQNNNGALNGLGVQVGYKQFFGESKRWGLRYYGFFDYNHGYIKSSFFNSSSDIWT
		449 508
		::*.***:**:**:*********************

Helicobacter outer membrane protein superfamily

BabA	
SabA	
	595 654
BabA J99	YGFGADALYNFINDKATNFLGKNNKLSVGLFGGIALAGTSWLNSEYVNLATMNNVYNAKM
SabA 26695	YGGGSDLLVNIINDSITRKNNKLSVGLFGGIOLAGTTWLNSQYVNLTAFNNPYSAKV
	509 565
	** *:* * *:***.
	corresponding to putative transmembrane domain
BabA	
SabA	
	655 714
BabA J99	NVANFQFLFNMGVRMNLARPKKKDSDHAAQHGIELGLKIPTINTNYYSFMGAELKYRRLY
SabA 26695	NATNFQFLFNLGLRTNLATARKKDSEHSAQHGIELGIKIPTITTNYYSFLGTQLQYRRLY
	566 625
	*.:******:*:* *** :********************
BabA	
SabA	
	715 724
BabA J99	SVYLNYVFAY
SabA 26695	SVYLNYVFAY
	626 635
	* * * * * * * *

Fig. S3. Alignment of BabA J99 and SabA 26695 protein sequences annotated with secondary structure elements. Full-length BabA and SabA share 40% sequence identity and 24% sequence similarity. The extracellular domains of BabA and SabA share 26% sequence identity and 28% sequence similarity. The transmembrane domains of BabA and SabA share 73% sequence identity and 15% sequence similarity. Indicated are positions that have a fully conserved residue (*); conservation between groups with strongly similar properties (> 0.5 in the Gonnet PAM 250 matrix) (:); conservation between groups with weakly similar properties (< 0.5 in the Gonnet PAM 250 matrix) (.). Alignment was performed with Clustal Omega.

Fig. S4. Superimposition of BabA from apo and cocrystal structures. No global conformational change occurs in BabA (sandy brown) after Le^b complex formation (steel blue) - RMSD = 0.25Å for all Ca atoms (22).

Fig. S5. Secondary structure and thermal stability of BabA and BabA variants. (A) Overlay of far-UV circular dichroism spectra averaged from three independent experiments. (B) Temperature-induced unfolding transition determined using differential scanning fluorimetry. The reported midpoint temperature of each protein unfolding transition (T_m) is the average (\pm SEM) from three independent experiments.

Fig. S6. Type 1 and type 2 fucosylated histo-blood group antigen molecular models. Stick models of Le^b and H-1 (type 1) antigens show a distinctly different three-dimensional orientation to Le^y and H-2 (type 2) antigens due to Gal β 1-3GlcNAc and Gal β 1-4GlcNAc linkages, respectively. Models were calculated in minimum energy conformations with the SWEET-II system (47). Fucose, galactose and *N*-acetylglucosamine residues are colored orange, yellow and blue, respectively.

Fig. S7. Rainbow representation of apo-BabA. Recombinant BabA used in this study contains amino acids 10 to 527 of mature BabA followed by three C-terminal polypeptide tags (6xLys-c-Myc-6xHis). The residues visible in the apo-BabA electron density map run from 27-527. BabA amino acids 10-26 (blue dotted line) and the C-terminal polypeptide tags corresponding to amino acids 528-552 (red dotted line) were not modeled.

Components	SeMet BabA	BabA:Le ^b		
L L	(SAD data collection)			
Data collection				
Space group	P 21 21 21	P 21 21 21		
Cell dimensions				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	60.83 93.04 96.92	60.59 91.77 96.42		
α, β, γ (°)	90 90 90	90 90 90		
Wavelength (Å)	0.97925 (PEAK)	0.920		
Resolution (Å)	48.46-1.91 (1.98-1.91)	44.78-2.12 (2.18-2.12)		
$R_{\text{merge (all I+ and I-)}}$	0.236 (3.427)	0.141 (0.643)		
Ι/σΙ	13.2 (0.9)	11.8 (3.0)		
Completeness (%)	98.7 (89.2)	99.1 (99.4)		
Multiplicity ¹	23.1 (13.8)	6.6 (6.5)		
Refinement				
Resolution (Å)	48.46-1.91 (1.98-1.91)	44.78-2.12 (2.18-2.12)		
No. reflections	39877 (96.7%)	29319 (98.9%)		
R _{work} / R _{free}	0.189/0.231 (0.378/0.331)	0.171/0.223 (0.224/0.271)		
No. atoms				
Protein	3662	3654		
Ligand/ion	-	57		
Water	132	156		
B-factors				
Protein	25.327	20.97		
Ligand/ion		35.413 (31.9) [§]		
Water	34.124	30.034		
R.m.s deviations				
Bond lengths (Å)	0.0184	0.0165		
Bond angles (°)	1.7756	1.726		

Table S1. X-ray diffraction data collection and refinement statistics.

[§]Excluding the partially visible galactose (Gal5) moiety

Table S2. Thermodynamic parameters of BabA:Le^b interaction at pH 4.5 and 7.4. The upper panels in each ITC trace show a representative calorimetric response obtained by titrating BabA with Le^b. The lower panels depict the binding isotherm obtained where the continuous line represents the least-squares fit of the data to a single-site binding model. The reported thermodynamic parameters are the average (\pm SEM) of three independent experiments. There are no significant differences between the thermodynamic parameters and dissociation constants of BabA:Le^b binding at pH 4.5 and 7.4 (unpaired two-tailed Welch's t-test, P > 0.05).

Table S3. Binding affinity of BabA to various histo-blood group antigens. Glycan structural representations can be interpreted with the following key: fucose (Fuc, \blacktriangle), galactose (Gal, \bigcirc), *N*-acetylglucosamine (GlcNAc, \Box), glucose (Glc, \bigcirc), *N*-acetylneuraminic acid (Neu5Ac, \diamondsuit). The upper panels in each ITC trace show a representative calorimetric response obtained by titrating BabA with the respective histo-blood group antigens. The lower panels depict the binding isotherm obtained where the continuous line represents the least-squares fit of the data to a single-site binding model (where applicable). Calorimetric titrations were performed at pH 7.4.

 a Average of three independent experiments (SEM = \pm 15µM). b Average of two independent experiments (Range = \pm 45µM).

Table S4. Oligonucleotides used in BabA cloning and site-directed mutagenesis. Where applicable, the recognition sites for the stated restriction enzymes are underlined. [FOR] and [REV] denote sense and antisense primers, respectively. [Phos] denotes a 5' phosphorylation.

Designation	Sequence (5' – 3')
BabA [FOR] 1- NcoI	TCGGAT <u>CCATGG</u> AAGACGACGGCTTTTAC
BabA [REV] -527 BamHI	TCTGCT <u>GGATCC</u> CTTCTTCTTCTTCTTCTTGAGTTCTTG
	GTTGATGG
BabA D233A [FOR]	[Phos]GTTCAAAAGTGGTTGCTAGTCGTGCAGATG
BabA D233A [REV]	[Phos]TGATCGTGGTGGTTACGCTTTTGCCGTCTATG
BabA D233A/S244A	[Phos]GTAATACAACAGGGGTGGCCTACACCGAAATCA
[FOR]	С
BabA D233A/S244A	[Phos]CATCTGCACGACTAGCAACCACTTTTGAAC
[REV]	
BabA N206A [FOR]	[Phos]GAACCAAGACTAAAATCCAAACCATAGAC
BabA N206A [REV]	[Phos]CGTCTTTTTGAGCATTTACACCTGTGAC