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Supporting Results 
 

Quantitative landscape evaluation 

Beyond its use as a tool for detecting dominant and alternative helices, we assessed REEFFIT’s ability to 

quantitatively recover their populations in the in silico benchmark. The root-mean-squared deviation 

(RMSD) of fitted vs. actual helix probability over helices formed with at least 1% frequency was 10%. 

This accuracy is somewhat better than the mean precision over these helix frequencies estimated from 

non-parametric bootstrapping (15%, see Supporting Methods and Supporting Table E), supporting the 

use of bootstrapping as a conservative estimate of error on a helix-by-helix basis. 

Example test cases with different landscape complexities in the in silico benchmark  

Our simulated benchmark for landscape modeling included RNAs that folded into predominantly one 

structure, RNAs with excited states present at more than 10% population, and RNAs with complex 

landscapes in which various competing helices were present. Below we describe examples of each of 

these cases. 

Supporting Figures Aa-e show simulated data for the sequence RF01301, the small nucleolar RNA 

SNOR4A. The benchmark simulation of this RNA involved 25 suboptimal secondary structures, most of 

them related by register-shifts to either a 10 nucleotide hairpin, 1301-A, or a more complex structure 

1301-B comprised of 5 helices separated by internal loops (Supporting Figure Aa). The REEFFIT model 

provided an excellent fit to this RNA’s simulated M2 data; this is visually apparent in a side-by-side 

comparison (Supporting Figure Ab) and reflected quantitatively in a χ2 /dof value of 1.09, close to the 

optimal value of 1.0. Recovered features included the ‘diagonal’ feature corresponding to disruptions 

near the site of each mutation as well as more dramatic features due to stabilization of state 1301-B 

upon certain mutations, visible as ‘plaid’ patterns in the simulated data (see, e.g. U14A, A41U). The 

importance of using a full ensemble fit was tested by repeating REEFFIT with the constraint that only 1, 

2, or 3 structures were used in describing the data; these fits did not adequately capture all features in 

the simulated M2 data (Supporting Figure D). 

Beyond the quality of the fit, the actual details of the ensemble were recovered accurately, despite a 

substantial perturbation of states’ population fractions from their original RNAstructure values. The 

improvement can be visualized in the matrices of base pair probabilities from RNAstructure and from 

REEFFIT compared to the actual simulated matrix (Supporting Figure Ac and Ad). Quantitatively, the 

total weights for 1301-A and 1301-B in the wild type sequence, simulated to be 58% and 42%, 

respectively, were recovered as helix fractions of 62±12% and 38±11%, respectively. Analogous accuracy 

was observed across all the simulated mutants (Figure Ae). Having the full mutate-and-map data set was 

important for making these inferences; using the wild type data alone (as would be carried out in 

conventional ‘one-dimensional’ chemical mapping[26]) returns a highly ambiguous fit with incorrect 

helix frequencies (see Supporting Figure E). 
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Supporting Figures Ae-h illustrate REEFFIT analyses for two other benchmark RNAs with qualitatively 

distinct ensembles. Tests on simulated data for the selenocysteine insertion sequence (SECIS, Rfam id  

RF00031, Figs. Af-h) supported the ability of M2-REEFIT to model an RNA with a single dominant 

secondary structure (95% population, recovered as 91±15%) without giving false positives for alternative 

structures present at low population. For complex cases, such as RF01300, REEFFIT was able to detect 

the 190 helices present at more than 25% population in the multiple states of the simulated ensembles 

of the wild type and 58 mutants (Fig. Ai-l). In both of these examples, analysis of the data for the wild 

type sequence alone gave poor recovery of the simulated ensembles (see Supporting Figure E), 

confirming the need for the full M2 measurements.  

Although in all the benchmark cases REEFFIT improved sensitivity and specificity to alternative helices, in 

some cases recovery of these hidden states was poor. Such was the case of RF00027, the let-7 miRNA, 

which contained three predominant structures in the ensemble: 27-A, 27-B, and 27-C (see Supporting 

Figures in S2 Text). Of these structures, which shared a long helix, only 27-A was present at more than 

2% in the wild type sequence. The suboptimal ensemble of structures sampled for this RNA was a 

heterogeneous set of 1084 structures. Using these suboptimal structures, RNAstructure overestimated 

the wild type fraction of the helices associated with 27-C by 20%. REEFFIT did not correct this 

overestimation, but rather increased the fraction of helices associated with 27-B by 10%. This behavior 

was reflected throughout the mutants: the mean helix-wise false positives across mutants increased 

from 1.69 to 1.88 (see Table 1). Nevertheless, clustering the 1084 structures taking 27-A, 27-B, and 27-C 

as medoids revealed that the cluster weights were in agreement, within error, with the simulated 

weights in the wild type and across most mutants; for example, the cluster weight for 27-A, a 

bootstrapped mean, was lower, but within bootstrap error, than the respective simulated weight in the 

wild type (88 ± 15 % compared to 98%). Further, the model fit recovered most features of the simulated 

data, with an excellent χ2 /dof of 1.03. This analysis indicates that the model given by REEFFIT is not 

necessarily worse than the prediction with no data, but rather an assessment of the uncertainties of the 

weights given the data.  

Another case where REEFFIT failed to give an accurate landscape model of the wild type sequence was 

challenging multi-state RNA given by RF01092. This RNA’s simulated ensemble was clustered in three 

states: 1092A, 1092B, and 1092C, which had almost no helices in common (see Supporting Figures in S2 

Text). 1092-A had the highest fraction in the wild type (43%), followed by 1092-B (41%), and 1092-C 

(16%). We modeled this dataset with 96 suboptimal structures. The unperturbed RNAstructure 

predictions gave a mean helix weight of 75% to 1092-B, far from the true fraction of 42% but REEFFIT 

increased this value to 81%. However, when clustering the 96 suboptimal structures into three states to 

compare to the simulating structures, we found that REEFFIT predicted the weights of most mutants 

almost exactly and the mutant-wise HP-RMSD saw a substantial improved from the unperturbed 

RNAstructure estimates (18% RMSD for the unperturbed values vs. 12% RMSD for the REEFFIT model 

and a mean true positive helix recovery increase across mutants from 2.6 to 3.26, see Table 1 and 

Supporting Table E). The comparatively low improvement for the WT (no improvement in helix-wise TP 

and FP and HP-RMSD) was explained by the difference in the magnitude of the simulated perturbations 

for the wild type and the rest of the mutants (an average of 1.1 kcal/mol for the mutants and 4.9 

kcal/mol for the wild type). This difference was in disagreement with one of our strategies for 

regularization, which penalizes solutions that deviate too much from ΔΔG values between wild type and 
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mutant structure fractions (see Materials and Methods). The situation, where there is a drastic 

difference between the prediction errors for the wild type and the mutants, was possible, albeit rare, in 

our simulations, since we generated the perturbations randomly and independently for each mutant; 

however, this situation might be unexpected in real systems. 

Evaluation using ViennaRNA 

As a further systematic check, we evaluated REEFFIT using an alternative secondary structure package, 

ViennaRNA [30]. Initial structures and population fractions predicted by ViennaRNA without M2 data 

gave high FNR (20%) and FDR of (26%). Incorporation of the M2 data by seeding REEFFIT with these 

structures and initial population fractions gave a significant improvement in FDR (11%), but only a 

modest improvement in FNR (18%; see Supporting Table F). In terms of population fractions, the 

ViennaRNA models gave similar helix frequency RMSDs (12% and see Supporting Table G) comparable to 

RNAstructure values. 

Including compensatory mutation measurements in REEFFIT analysis of the 126-235 16S domain 

REEFFIT analysis of the 16SFWJ M2 data data suggested weak populations of alt-P1d (26±18%) and alt-P4 

(18±10%), albeit with high errors estimated by bootstrapping. These results convey the uncertainty of 

the M2 data in the alt-P1d, alt-P4, and P4 regions, similar to our expert analysis prior to compensatory 

rescue experiments. We therefore tested if REEFFIT could refine its inferences upon inclusion of data for 

compensatory mutations designed to test different helices and previously interpreted manually. Indeed, 

the likelihood of helices alt-P1d and alt-P4, for which no compensatory rescue evidence was found, was 

reduced, as the estimated errors on their population fraction increased (both with weights 24±21%, 

signal to noise ratio of 1.1, at our detection threshold). Other helices for which compensatory mutants 

were observed to give rescue (P4a and shiftP4a) remained, but now with higher confidence and reduced 

uncertainties (28±11% and 67±14%, see Figure E).  

FMN titrations of mutants stabilizing TBWN-A/B/C 

While we were able to test REEFFIT predicted reactivities by stabilizing each state of the Tebowned 

switch, an additional set of tests of the REEFFIT model was enabled by the inclusion of the FMN aptamer 

sequence in these RNAs. We tested predictions that the state-isolating mutants would show improved 

(for TBWN-B) or worsened (for TBWN-A & TBWN-C) affinities for the FMN ligand compared to the wild 

type sequence. FMN binding experiments monitored by dimethyl sulfate mapping [33] confirmed these 

predictions, with the TBWN-B-stabilizing mutants giving dissociation constants of Kd = 2–5 and 3–29 M, 

improved by a ratio of 8 to 250-fold compared to the wild type RNA (250—530 M). The mutants 

stabilizing TBWN-A and TBWN-C gave poorer binding than wild type (Kd of 3700 M and > 5000 M for 

TBWN-A mutants; and 3000 M  and > 5000 M for TBWN-C mutants; Figure 5 and Supporting Figure 

H). Overall, both mutational and ligand binding analyses support the REEFFIT ensemble of at least three 

states in the Tebowned RNA, which in turn explain the structural discrepancies observed in initial 

characterization of this imperfectly designed riboswitch.  

Supporting methods 
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Other strategies for ensemble (model) selection 

We explored other approaches for selecting the structural ensemble to fit to the data. In particular, we 

tested to see if few small subsets of the sampled suboptimal structures gave better fits than most 

subsets. Theoretically, to find the best structures that model the data we could enumerate all possible 

combinations of structures from the suboptimal structures, fit our model to each combination, calculate 

a penalized information score, and choose the combination with the best score.  In practice, this method 

is intractable for a large set of suboptimal structures due to the exponentially large number of possible 

combinations. Further, the quadratic nature of the likelihood function does not allow for a nested 

decomposition required for search space reduction techniques such as dynamic programming. 

Nevertheless, we performed MCMC on the combination of structures, using the Akaike information 

criterion (AIC) as a scoring function and adding and deleting structures as the Monte Carlo moves. Even 

for the simplest cases, such as the MedLoop RNA, several combinations of structures yielded similarly 

optimal AIC scores, indicating ambiguities when selecting a subset of structures. Furthermore, these AIC-

equivalent combinations of structures modeled some parts of the dataset better than others. Other 

strategies that we tested, including a greedy “hill climbing” algorithm and using SHAPE-directed 

modeling between EM iterations to guide the structure selection procedure gave similar results, 

indicating potentially important missing variables in these limited models and suggesting that the best 

strategy would be to model as many relevant structures as possible – a global ensemble fit – with 

stringent regularization. This global ensemble fit captures many features that are missed when using a 

small set of structures, as can be seen in Figure C. When properly controlling for over-fitting, as with the 

bootstrapped uncertainties, weight regularization, and structural motif decomposition approaches 

outlined above, even models with a large number of structures could be fit to the data, returning 

conservative error estimates via bootstrapping, and making testable predictions. 

Modeling the presence of a ligand 

In two experimental cases, the add adenine riboswitch and the synthetic Tebowned FMN switch, we 

probed the RNAs in the presence of ligand (5 mM adenine and 2 mM FMN respectively). To model these 

data, we included copies of the aptamer-forming structures but changed the reactivity priors of the 

positions that are known to interact with the ligand from unprotected to protected. Further, for the data 

with ligand present, we gave ligand-protected structures a 20 kcal/mol bonus to simulate ligand binding 

and forced these structures to stay within 10 kcal/mol of their starting energies.   

Visualizing the fitted ensemble 

Visualizing the base pairing patterns and fractions of possibly hundreds of fitted structures in the wild 

type ensemble and across all mutants is a challenging data visualization problem. To achieve this, we 

employed two different strategies. First, to visualize changes from the REEFFIT-predicted ensemble from 

initial RNAstructure values, we plotted base pair probability matrices comparing the RNAstructure 

fractions to the final REEFFIT values (see, e.g., Figure 1). To show broad structural ensemble changes 

between variants, we grouped all of the fitted structures into a reduced number of states using 

hierarchical clustering with base pair distance as the metric. To set a cutoff for the dendrogram, we 

chose a threshold that maximizes the Calinski-Harabasz index that has been previously used to cluster 

RNA secondary structures [13]; the structure medioids of each cluster are then used as representatives 
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of each states. This automated clustering of the most populated structures into states are used to help 

interpret and visualize the modeled ensembles across variants – the state weights corresponding to the 

sum of the weights of structures for each cluster can be readily visualized across perturbations (see 

Figures 1, F and H). We emphasize that this clustering mechanism is for visualization purposes only and 

that predictions of experimental observables, such as base pair and helix probabilities (shown in Figures 

1-6 and used as our evaluation criteria in all Tables) are independent of this clustering scheme. 

Simulating M2 data 

We used the following procedure to simulate M2 SHAPE data for a given sequence.  

1. We start with the set of structures taken from all mutants whose energies were calculated to be 

at most 5% above the minimum free energy structure obtained by the AllSub RNAstructure 

program. 

2. We then decomposed these structures into motifs (helices, bulges, n-way junctions, single-

stranded regions, dangles, and hairpin loops).  

3. We generated mock reactivity profiles for each motif by sampling reactivities URMDB  and 

PRMDB   for unpaired and paired residues respectively.  

4. Additionally, we added a term, chosen uniformly at random, to all nucleotides in the motif (from 

the [-0.1, 0.1] interval for helices and for the [-0.1, 0.5] interval for the rest of the motifs). This 

introduces correlations that are typically observed across sets of paired and unpaired regions in 

SHAPE data. This term is ignored for reactivities that would become negative when adding these 

correlations.  

5. For each single-nucleotide mutant, we calculated the free energies of the structures given the 

mutated sequence using the ef2n RNAstructure program[48]. For the perturbed ensembles of 

the ab initio benchmark, we added Gaussian noise (mean of 0, standard deviation of 1 kcal/mol) 

to the energies simulate deviations arising from our incomplete understanding of RNA 

thermodynamics.  

6. Using these noisy energies, we calculated the Boltzmann weights of each structure and for each 

mutant. The reactivity profile of each mutant was then the linear combination of the reactivity 

profiles of each structure weighted by the set of weights calculated previously.  

7. To simulate local perturbations due to mutations, we randomly added Gaussian-distributed 

reactivity differences in sites at most one nucleotide away from the mutation position and any 

base pair affected by the nucleotide change.  

8. We then simulated measurement errors. For each sequence position i, we sampled an error 

variance uniformly at random from the [0.01 , 1] interval and scaled it by a factor of one half of 

the mean reactivity value across mutants in i, in line with the empirical observation that higher 

reactivities typically have higher measurement errors. We then added zero-mean Gaussian 

errors to each position using these variances. 
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These simulated datasets showed strong visual similarity to experimental M2 data, such as global 

structure rearrangements and punctate features marking concomitant release of base pairing 

nucleotides upon mutation of one partner (see Figure 1). 

Evaluation metrics for in silico benchmark 

To evaluate the performance of REEFFIT in the in silico benchmark, we used two validation strategies. 

First, we evaluated the ability of REEFFIT to detect alternative helices from M2 data while at the same 

time avoiding false positives. For each helix with average base-pair fraction of at least 25%, we 

considered it a true positive (TP) if the predicted model included at least half of its base pairs with at 

least 25% fraction. Similarly we considered helices for which at least half of its base pairs were predicted 

to be present in at least 25% fraction to be false positive (FP) predictions if these helices were not 

present in at least 25% fraction in the simulated model. These metrics are presented in Tables 1 and A.  

Second, to evaluate the quality of the fits, we used the χ2/dof statistic to assess goodness of fit and an 

average helix-wise root mean square deviation (HP-RMSD), either in the wild-type or across variants. Let 
ref

jsHP  and 
pred

jsHP be true and predicted helix-wise probabilities for helix j in structure s, respectively 

(here, helix-wise probability is calculated as the mean of the base pair probabilities in that helix) and

HI  the set of nucleotides whose helix probability is greater than 1% in either the reference or the 

prediction. The HP-RMSD is then: 

 
 

,

2

 
HP-RMSD , 

ref pred

js jsref p j s HIred
HP HP

HP HP
HI







  (17) 

The restriction of the HP-RMSD to pairs with probabilities greater than 1% reduces biases towards low 

HP-RMSDs for large RNA sequences. These metrics are presented throughout the supporting tables. 

Data set and software availability 

The REEFFIT programs and their source code are available at 

http://rmdb.stanford.edu/tools/docs/reeffit/, along with software documentation and tutorials.  

M2 capillary electrophoresis data for the Bistable, add riboswitch, M-stable, and Tebowned RNAs have 

been deposited in the RMDB (RMDB IDs BSTHPN_1M7_0000.rdat, ADDSCHW_1M7_0000, 

ADDSCHW_1M7_0001, MSTBL_1M7_0000, TBWND_1M7_0000, and TBWND_1M7_0001). 

 M2-seq data for the MedLoop are part of the EteRNA cloud lab, rounds 72 (RMDB ID 

ETERNA_R72_0000, project name “MedLoop”).  

RDAT files for the simulated datasets can be downloaded from http://purl.stanford.edu/zr287dq2666   

 

  

http://rmdb.stanford.edu/tools/docs/reeffit/
http://purl.stanford.edu/zr287dq2666
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Supporting Tables 
 

Table A: Helix-wise performance results for M2-REEFFIT landscape dissection on a 20 RNA benchmark 

from the Rfam database across all simulated mutants. 

 
 No data REEFFIT 

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a TP FP TP FP 

RF00031 SECIS 65 85 1.01 177 133 76 162 1 

RF00051 mir-17 83 652 1.02 429 407 16 420 13 

RF00014 DsrA 84 594 0.96 338 300 49 327 7 

RF01092 GP_knot2 61 96 1.01 184 125 61 179 25 

RF00066 U7 61 77 1.01 177 96 96 141 69 

RF01300 snoU49 58 64 0.94 190 142 85 179 4 

RF01139 sR2 55 124 0.98 136 114 57 127 1 

RF01274 sR45 55 195 1.10 123 105 19 111 35 

RF01297 sR40 61 511 1.04 184 125 100 170 10 

RF00555 L13_leader 56 64 1.05 161 134 30 157 4 

RF00775 mir-432 53 137 1.11 250 189 28 231 34 

RF00173 Hairpin 46 43 1.09 103 85 41 96 21 

RF00108 SNORD116 36 25 1.03 64 39 68 46 56 

RF00570 SNORD64 58 102 1.10 194 148 30 180 16 

RF01301 snoR4a 53 59 1.00 131 82 90 121 39 

RF01125 sR4 58 140 1.02 139 117 22 130 8 

RF00436 UnaL2 32 32 1.06 57 57 10 57 0 

RF01151 snoU82P 49 59 1.04 79 49 50 76 19 

RF00027 let-7 76 1084 1.03 243 235 28 241 26 

RF00042 CopA 90 1069 1.06 554 528 21 549 10 

 
   FDR 23.3%  9.7%  

 
   FNR 18%  5.4%  

a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table B: Base-pair-wise performance of M2-REEFFIT in the in silico Rfam benchmark across all mutants 
 

 
 No data REEFFIT  

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Base pairs TP FP TP FP 

RF00031 SECIS 65 85 1.01 
1179 936 548 1119 37 

RF00051 mir-17 83 652 1.02 
2372 2252 193 2310 155 

RF00014 DsrA 84 594 0.96 
2544 2252 443 2438 51 

RF01092 GP_knot2 61 96 1.01 
994 592 357 878 175 

RF00066 U7 61 77 1.01 
781 477 496 640 380 

RF01300 snoU49 58 64 0.94 
1143 824 520 1031 78 

RF01139 sR2 55 124 0.98 
758 600 370 643 56 

RF01274 sR45 55 195 1.10 
1046 878 309 928 247 

RF01297 sR40 61 511 1.04 
1108 786 507 1031 116 

RF00555 L13_leader 56 64 1.05 
1066 922 203 1040 52 

RF00775 mir-432 53 137 1.11 
1141 865 127 1057 161 

RF00173 Hairpin 46 43 1.09 
551 444 233 460 94 

RF00108 SNORD116 36 25 1.03 
307 177 347 235 239 

RF00570 SNORD64 58 102 1.10 
1126 883 324 1054 116 

RF01301 snoR4a 53 59 1.00 
848 589 377 792 150 

RF01125 sR4 58 140 1.02 
913 815 256 874 180 

RF00436 UnaL2 32 32 1.06 
321 318 59 320 43 

RF01151 snoU82P 49 59 1.04 
443 279 340 404 181 

RF00027 let-7 76 1084 1.03 
2122 2042 251 2094 227 

RF00042 CopA 90 1069 1.06 
2873 2716 242 2833 152 

 
 

  FDR 24.9%  11.5%  

 
 

  FNR 16.9%  6.2%  
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Table C: Performance of M2-REEFFIT in the in silico Rfam benchmark for the wild type sequence alone 
 

 
 No data REEFFIT  

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a TP FP TP FP 

RF00031 SECIS 65 85 1.01 9 2 2 2 0 

RF00051 mir-17 83 652 1.02 17 5 0 6 0 

RF00014 DsrA 84 594 0.96 7 4 0 4 0 

RF01092 GP_knot2 61 96 1.01 11 3 0 3 0 

RF00066 U7 61 77 1.01 3 2 1 2 1 

RF01300 snoU49 58 64 0.94 13 3 2 3 1 

RF01139 sR2 55 124 0.98 4 2 1 2 0 

RF01274 sR45 55 195 1.10 13 2 0 2 1 

RF01297 sR40 61 511 1.04 15 2 1 2 0 

RF00555 L13_leader 56 64 1.05 6 3 0 3 0 

RF00775 mir-432 53 137 1.11 13 3 1 4 1 

RF00173 Hairpin 46 43 1.09 9 2 1 2 0 

RF00108 SNORD116 36 25 1.03 4 2 2 2 0 

RF00570 SNORD64 58 102 1.10 8 1 2 1 2 

RF01301 snoR4a 53 59 1.00 3 2 1 5 0 

RF01125 sR4 58 140 1.02 10 1 1 1 2 

RF00436 UnaL2 32 32 1.06 8 2 0 2 0 

RF01151 snoU82P 49 59 1.04 9 0 2 1 1 

RF00027 let-7 76 1084 1.03 9 3 0 3 1 

RF00042 CopA 90 1069 1.06 16 6 0 6 0 

 
 

  FDR 25.4%  15.2%  

 
 

  FNR 24.2%  15.2%  

 
a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table D: REEFFIT performance in the in silico Rfam benchmark using only one-dimensional chemical 
mapping (WT) data. 
 

 
 No data 

REEFFIT  
(1D data) 

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a TP FP TP FP 

RF00031 SECIS 65 85 -0.09 9 2 2 2 2 

RF00051 mir-17 83 652 1.02 17 6 5 0 5 

RF00014 DsrA 84 594 0.97 7 4 4 0 4 

RF01092 GP_knot2 61 96 -0.08 11 5 3 0 3 

RF00066 U7 61 77 1.01 3 2 2 1 2 

RF01300 snoU49 58 64 1.1 13 3 3 2 3 

RF01139 sR2 55 124 0.94 4 2 2 1 2 

RF01274 sR45 55 195 -0.04 13 4 2 0 2 

RF01297 sR40 61 511 0.98 15 2 2 1 2 

RF00555 L13_leader 56 64 1.04 6 3 3 0 3 

RF00775 mir-432 53 137 1.05 13 4 3 1 3 

RF00173 Hairpin 46 43 1.11 9 2 2 1 2 

RF00108 SNORD116 36 25 1.09 4 2 2 2 2 

RF00570 SNORD64 58 102 1.03 8 5 1 2 1 

RF01301 snoR4a 53 59 1.03 3 5 2 1 2 

RF01125 sR4 58 140 -0.05 10 3 1 1 1 

RF00436 UnaL2 32 32 1.1 8 2 2 0 2 

RF01151 snoU82P 49 59 1 9 1 0 2 1 

RF00027 let-7 76 1084 1.01 9 3 3 0 3 

RF00042 CopA 90 1069 0.96 16 6 6 0 6 

 
 

  FDR 25.4%  25%  

 
 

  FNR 24.2%  22.7%  
a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table E: M2-REEFFIT performance in the in silico Rfam benchmark as measured by helix-wise RMSD. 
 

 
 

   No data REEFFIT 

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a 

WT 
HP-RMSD 

All mutant 
HP-RMSD 

WT 
HP-RMSD 

All mutant 
HP-RMSD 

RF00031 SECIS 65 85 1.01 9 14% 15% 5% 8% 

RF00051 mir-17 83 652 1.02 17 10% 9% 5% 8% 

RF00014 DsrA 84 594 0.96 7 2% 10% 5% 7% 

RF01092 GP_knot2 61 96 1.01 11 18% 18% 17% 12% 

RF00066 U7 61 77 1.01 3 12% 17% 8% 11% 

RF01300 snoU49 58 64 0.94 13 16% 19% 14% 10% 

RF01139 sR2 55 124 0.98 4 12% 12% 10% 10% 

RF01274 sR45 55 195 1.10 13 19% 13% 18% 11% 

RF01297 sR40 61 511 1.04 15 10% 16% 9% 10% 

RF00555 L13_leader 56 64 1.05 6 10% 18% 6% 7% 

RF00775 mir-432 53 137 1.11 13 20% 18% 15% 11% 

RF00173 Hairpin 46 43 1.09 9 16% 17% 10% 13% 

RF00108 SNORD116 36 25 1.03 4 24% 28% 12% 15% 

RF00570 SNORD64 58 102 1.10 8 35% 16% 28% 10% 

RF01301 snoR4a 53 59 1.00 3 18% 21% 7% 9% 

RF01125 sR4 58 140 1.02 10 27% 11% 22% 8% 

RF00436 UnaL2 32 32 1.06 8 6% 15% 4% 7% 

RF01151 snoU82P 49 59 1.04 9 34% 23% 10% 12% 

RF00027 let-7 76 1084 1.03 9 6% 9% 9% 8% 

RF00042 CopA 90 1069 1.06 16 1% 5% 6% 6% 

 
 

  Average 16% 16% 11% 10% 

 
a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table F: M2-REEFFIT performance on all mutants in the in silico Rfam benchmark using ViennaRNA 
instead of RNAstructure to estimate initial energies. 
 
 

 
 No data 

REEFFIT 
(ViennaRNA) 

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a TP FP TP FP 

RF00031 SECIS 65 85 1.03 2.68 2.02 1.15 2.24 0.06 

RF00051 mir-17 83 659 1.02 5.11 4.85 0.19 4.94 0.26 

RF00014 DsrA 84 735 1.02 3.98 3.52 0.58 3.85 0.15 

RF01092 GP_knot2 61 96 1.07 2.97 2.02 0.98 2.19 0.05 

RF00066 U7 61 77 1.06 2.85 1.55 1.55 1.10 0.94 

RF01300 snoU49 58 64 1.04 3.25 2.41 1.44 2.71 0.02 

RF01139 sR2 55 124 1.04 2.43 2.04 1.02 1.95 0.16 

RF01274 sR45 55 195 1.05 2.20 1.88 0.34 1.96 0.66 

RF01297 sR40 61 543 1.02 2.97 2.02 1.61 2.50 0.26 

RF00555 L13_leader 56 64 1.05 2.82 2.35 0.53 2.58 0.40 

RF00775 mir-432 53 137 1.08 4.63 3.50 0.52 3.81 0.61 

RF00173 Hairpin 46 43 1.11 2.19 1.81 0.87 1.68 0.36 

RF00108 SNORD116 36 25 1.12 1.73 1.05 1.84 1.24 1.03 

RF00570 SNORD64 58 102 1.03 3.29 2.51 0.51 2.90 0.25 

RF01301 snoR4a 53 59 1.05 2.43 1.52 1.67 2.35 0.57 

RF01125 sR4 58 140 1.07 2.41 1.98 0.37 2.29 0.12 

RF00436 UnaL2 32 32 1.19 1.73 1.73 0.30 1.73 0.00 

RF01151 snoU82P 49 59 1.05 1.66 0.98 1.00 1.46 0.28 

RF00027 let-7 76 1111 1.02 3.16 2.96 0.34 3.30 1.80 

RF00042 CopA 90 1069 1.01 6.09 5.80 0.23 6.03 0.11 

 
 

  FDR 26%  11%  

 
 

  FNR 20%  18%  

 
a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table G: M2-REEFFIT performance in the in silico Rfam benchmark as measured by helix-wise RMSD 
using ViennaRNA. 
 

 
 

   No data 
REEFFIT 

 (ViennaRNA) 

Name 
Sequence 

Length 
Number of 
structures χ2/dof 

Number of 
Helices a 

WT 
HP-RMSD 

All mutant 
HP-RMSD 

WT 
HP-RMSD 

All mutant 
HP-RMSD 

RF00031 SECIS 65 85 1.03 9 14% 15% 5% 8% 

RF00051 mir-17 83 659 1.02 17 10% 9% 5% 9% 

RF00014 DsrA 84 735 1.02 7 2% 10% 4% 6% 

RF01092 GP_knot2 61 96 1.07 11 18% 18% 18% 11% 

RF00066 U7 61 77 1.06 3 12% 17% 7% 9% 

RF01300 snoU49 58 64 1.04 13 16% 19% 16% 15% 

RF01139 sR2 55 124 1.04 4 12% 12% 9% 10% 

RF01274 sR45 55 195 1.05 13 19% 13% 16% 12% 

RF01297 sR40 61 543 1.02 15 10% 16% 7% 9% 

RF00555 L13_leader 56 64 1.05 6 10% 18% 8% 10% 

RF00775 mir-432 53 137 1.08 13 20% 18% 14% 14% 

RF00173 Hairpin 46 43 1.11 9 16% 17% 16% 15% 

RF00108 SNORD116 36 25 1.12 4 24% 28% 29% 18% 

RF00570 SNORD64 58 102 1.03 8 35% 16% 26% 10% 

RF01301 snoR4a 53 59 1.05 3 18% 21% 7% 9% 

RF01125 sR4 58 140 1.07 10 27% 11% 22% 10% 

RF00436 UnaL2 32 32 1.19 8 6% 15% 6% 8% 

RF01151 snoU82P 49 59 1.05 9 34% 23% 4% 12% 

RF00027 let-7 76 1111 1.02 9 6% 9% 13% 8% 

RF00042 CopA 90 1069 1.01 16 1% 5% 7% 6% 

 
 

  Average 16% 16% 12% 10% 

 
a Helices are a minimum 3 base pairs long and are present in a minimum 25% population fraction. 
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Table H: Sequences experimentally probed with M2-REEFFIT, written from 5´ to 3´. Sequences in blue 
represent the RNA domain of interest. Reference GAGUA (for M2-CE) or barcode UUCG (for M2-seq or 
MedLoop RNA) hairpins are highlighted in red. 
 

Name Sequence  (numbering of region of interest) 

MedLoop 
GGAAAGGAACGACGAACCGAAAACCGAAGAAAUGAAGAAAGGUUUUCGGUACCGACCUGAAAAC

CUCUCACGUUCGCGUGAGAAAAAGAAACAACAACAACAAC (-9-50) 

16S 126-235 
domain 

GGGAACGACUCGAGUAGAGUCGAAAAGGGAAACUGCCUGAUGGAGGGGGAUAACUACUGGAAA
CGGUAGCUAAUACCGCAUAACGUCGCAAGACCAAAGAGGGGGACCUUCGGGCCUCUUGCCAUCG

GAUGUGCCCAAAGGAGUCGAGUAGACUCCAACAAAAGAAACAACAACAACAAC 
(126-235) 

V. vulnificus add 
riboswitch 

GGGAACCGAGUAGGUUCGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAG
CCUUAAACUCUUGAUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUG

AAUGGGAUCCGAGUAGGAUCCUGAAAAAAACAACAACAAC (14-125) 

Bistable 
GGUGGCUUCGAGUAGAAGCCUUAUGUACCGGAAGGUGCGAAUCUUCCGAAGGAUCCGAGUAGG

AUCCAAAAAGAAACAACAACAACAAC (1-25) 

Tebowned 
GGACGAUUGAGGAUAUUUAGACAUAGAGAAGGCAAUGGAGAGAGAGCUUUUUAAAGAAACAAC

AACAACAAC (1-52) 

M-stable 
GGAAACGCAACGAGUAGUUGCGUUACGCAGCAGUCCUCCAGAGGACAUUUUUCGAGCAGGUAGA

GAGGAUCCGAGUAGGAUCCAAAGAAACAACAACAACAAC (1-44) 
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Table I: Folding conditions and statistics for experimental cases. 
 

Name Condition 

Sequence 
length 

Number 
of 

variants a 

Number of 
suboptimal 
Structures χ2/dof 

Number of 
helices in WT a 

Average no. of 
helices in all 

variants* 

MedLoop 

50 mM Na-HEPES, 

10mM MgCl2 

pH 8.0 

60 61 230 1.17 2 1.8 

16S 126-235 

domain 

50 mM Na-HEPES,  

10mM MgCl2 

pH 8.0 

110 111 1794 1.07 5 6.8 

16S 126-235 

domain  

M2-rescue 

50 mM Na-HEPES, 

10mM MgCl2 

 pH 8.0 

110 215 3147 0.89 4 4.5 

V. vulnificus add 

riboswitch 

50 mM KCl,  

25 mM K3PO4,  

10mM MgCl2 

pH 6.5 

(no adenine) 

112 113 2043 c 1.27 c 6 d 5.8 

V. vulnificus add 

riboswitch 

50 mM KCl,  

25 mM K3PO4,  

10mM MgCl2 

pH 6.5 

(5 mM adenine) 

112 113 2043 c 1.27 c 8 d 12.1 

Bistable 

150 mM NaCl,  

pH 8.0 
25 26 76 1.1 2 1.2 

Tebowned 

50 mM Na-HEPES, 

10mM MgCl2 

 pH 8.0 

(no FMN) 

54 49 27 c 1.24 c 2 d 1.8 

Tebowned 

50 mM Na-HEPES, 

10mM MgCl2 

 pH 8.0 

(2mM FMN) 

54 49 27 c 1.24 c 4 d 4.6 

M-stable 

50 mM Na-HEPES,  

10mM MgCl2 

pH 8.0 

44 45 91 1.5 1 1.4 

 
a Includes the wild type sequence 
b Helices are located in the sequence of interest region, are a minimum 3 base pairs long and are present 
in a minimum 25% population fraction. 
c M2 data in the presence and absence of ligand for the add and Tebowned RNA switches were modeled 
jointly by REEFFIT. 
d Increase in number of helices upon ligand binding is due to suppression of ligand-bound state helices in 
ligand-free conditions, below 25% population fraction cutoff 
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Supporting Figures 

Figure A: Three example cases of evaluating REEFFIT with simulated data. (a) Simulated M2 data for the 

RF01301 snoR4a test case (b) Bootstrapped REEFFIt fits. (c) Base pair probability matrix comparisons 

between the simulated (true) base pair probabilities (upper half) and the unperturbed RNAstructure 

values; (d) analogous base pair probability comparison to M2-REEFFIT estimates. (e) Cluster medioids of 

structures used for generating the M2 simulated data. (f—j) Evaluation results for the RF00031 SECIS 

RNA simulated mapping data. (k—o) Evaluation results for the RF00014 DrsA RNA. Detailed figures on 

each of the benchmark cases are given in the Supporting Figures in S2 Text. 
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Figure B: Overall performance of REEFFIT for helix detection in the WT sequence of the simulated M2 

benchmark. (a) Precision-recall curve for various REEFFIT signal-to-noise thresholds for detecting helices 

present in at least 25% fraction in all probed variants. PPV = positive predictive value (false discovery 

rate, FDR = 1 – PPV). Blue dot: Reference FDR and FNR of RNAstructure baseline (no data). (b) Black: 

Precision-recall curve for various REEFFIT signal-to-noise thresholds for helix detection in the wild type 

sequence. Gray: analogous precision-recall curve when using only the WT (1D mapping) data. Blue dot: 

Reference FDR and FNR of RNAstructure baseline (no data).  
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Figure C: Comparison of REEFFIT’s global ensemble fit with few-state fits on the in silico benchmark test 

case RF01301 sno4a RNA. (a) Simulated M2 data; (b) predicted data using a global ensemble fit; (c) 1-

state, 2-state, and 3-state fits using top structures as scored by RNAstructure free energy. The fits (c) 

capture some, but not all, features seen in the simulated data when compared to a global ensemble fit. 

(d) Comparison of predicted data for the wild-type sequence by the 3-state and global ensemble 

models. Several features (e.g. positions 9, 15, and 42) are not adequately captured in the 3-state fit but 

are predicted by the global ensemble fit. 
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Figure D: Fitting only the wild type (one-dimensional) chemical mapping profile provides little 

information on the underlying ensemble. Base-pair probability matrix plots of the inferred landscapes 

using no data (a and d), only one-dimensional (b and e) and the full M2 data (c and f) for the in silico test 

cases (a-c) RF01301 sboR4a and (d-f) RF00031 SECIS RNAs– each plot has the simulated, true, base-pair 

probability plot in the upper triangle for reference. In both cases, one-dimensional chemical mapping 

data fails to provide sufficient information to correctly model the folding landscape of these RNAs.  

 

  



21 

 

Figure E: Refinement of the 16S 126-235 RNA domain landscape model using mutate-and-rescue 

chemical mapping data. (a) Base pair probability matrix using only M2 data. (b) Base pair probability 

matrix using M2 and mutate-and-rescue data. 

 

  



22 

 

Figure F: Mutant-wise cluster weights for RNAs with previously-studied landscapes. (a) M2 

measurements of the MedLoop RNA (b) Mutant-wise weights for each cluster of structures, (c) 

representative state medioids. Analogous plots are shown for (d-f) the 16S rRNA 126-235 domain, (e-g) 

a bistable hairpin, and (h-k) the add adenine riboswitch. Cluster medioids are those shown in main text, 

Figs 2 and 3. 
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Figure G: Comparison of REEFFIT’s global ensemble fit with a two-state fit on the Tebowned FMN.(a) M2 

data with no FMN; (b) predicted data using a global ensemble fit; (c) two-state fit using TBWN-A and 

TBWN-B. The two-state fit does not capture all the features seen in the experimental data. For example, 

mutants A25U and A34U are not fitted correctly in the two-state fit but are adequately captured in the 

global ensemble fit. 
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Figure H: Mutant-wise cluster weights for (a-c) the Tebowned switch and (d-f) the random M-stable 

RNA. Cluster medioids are those shown in main text, Fig.4 and 6, respectively. 
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Figure I: DMS FMN titrations for each mutant stabilizing the TBWN-A (M1-A and M2-A), TBWN-B (M1-B 

and M1-B), and TBWN-C (M1-C and M2-C) structures used for the Kd fits in Figure 5. 
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Figure J: Comparison of REEFFIT’s global ensemble fit with two and three state fits for the M-stable 

random RNA. (a) M2 data; (b) predicted data using a global ensemble fit; (c) 2-state, and 3-state fits 

using top structures as scored by RNAstructure free energy. Two and three state fits do not capture 

important features in the data (marked by blue arrows in (b)), such as patterns of protection in residues 

14 to 45 found in several mutants (G5C, G21C, C31G, A33U, and A36U). (e.g. features of the C40G are 

not adequately captured in the 3-state fit but are adequately predicted by the global ensemble fit). 

 


