
Supplementary Information 
 

In this Supplementary Information we provide further information regarding the details of our 
methods as well as some additional supplementary results. 
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1. Handling missing data 

If donor A has a missing sample at structure S, expression values for this sample are imputed in one of 
the following ways:  

i. If there are other donors of the same age as donor a, namely bi and i = 1,…k where k is the 
number of replicates (i.e. donors of the same age as donor a), then: 
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𝐹𝑏𝑖
𝑎  is a correction factor representing the average M-fold change between all samples of 

donor a compared to samples of donor bi. g is the total number of genes; r is the number of 

brain structures. 𝑌𝑗𝑙𝑎 and 𝑌𝑗𝑙
𝑏𝑖  is the expression of gene l in structure j of donors a and bi, 

respectively. 𝑁𝑎 and 𝑁𝑏𝑖  are the total sum of the expression values of donors a and bi, 
respectively. 
 

ii. If there is no other donor of the same age as donor a, we consider all the donors within the 
same age stage including donor a (e.g. Childhood). Donors of the age stage (excluding donor 
a) are: cp and p = 1,…m where m is the number of donors in the age window of donor a, 
then: 
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Where 𝐹𝑐𝑝
𝑎  is the average M-fold change between all samples of donor a compared to the 

samples of donor cj. 
  



2. Spearman’s Rank Correlation 
 

In our study, we used the Spearman’s Rank Correlation throughout to assess for pair-wise relationships 
among genes.  Both the Spearman and Pearson correlation methods are measures of the strength of 
correlation between two variables.  The difference is that Pearson's correlation assumes variables are 
normally distributed, whereas Spearman’s does not, and so is not affected by outliers or non-normal 
distributions. As a consequence, however, some precision in the data with regard to absolute values is 
lost when using Spearman. 

We specifically chose the Spearman method for three reasons:   

i. Having used a publicly available, large dataset, we were concerned about data normalization and 
noise. Although we applied a normalization step on the data before our analysis, the data was 
still produced from different brain donors, different brain regions, and each tissue sample was 
run in a separate sequencing experiment. This has the possibility of introducing technical 
variability in the absolute value of gene expression, which Pearson’s correlation would not 
correct for.  As Spearman’s Rank Correlation focuses more on the similarity in the change of 
gene expression, as opposed to similarity in the absolute values of gene expression, we believed 
it would better account for possible technical variation in absolute gene expression levels. 
 

ii. By considering the ranks rather than the actual expression values of gene-pairs (via Spearman’s 
correlation rather than Pearson’s), our results focus more on the similarity of expression value 
changes of each gene relative to all other genes, as opposed to similarities in the absolute 
expression values between genes. This is biologically relevant, as the biological consequence of a 
small change in a gene with a small dynamic range may be more important to the cell than a very 
large change in a gene with comparatively larger dynamic range (for a nice discussion of this 
issue, we would refer to Seita J, et al. Gene Expression Commons: an open platform for absolute 
gene expression profiling. PLoS One. 2012;7(7):e40321). 
 

iii. By choosing to use Spearman’s Rank Correlation, our analysis was not focused on when gene 
pairs were highly expressed in absolute terms, but rather on when pairs of genes show similar 
patterns of change across developmental time. This allowed us to infer that genes may be 
regulated similarly because they are involved in shared transcriptional networks, and therefore 
when exactly they are expressed most highly is not a major focus of this study. 

 
 

  



3. Random Control Networks 
 
To assess the specificity of the results we obtained from the ASD list, we also generate two sets of 
random networks to compare our findings with.  First, we generate 10 sets of 455 genes each, which 
were randomly selected from the 13,563 genes expressed in our BrainSpan dataset. These random gene 
sets were used to assess for the specificity of our gene ontology enrichment analysis of ASD candidates, 
as will be described later. None of the GO terms which were significantly enriched in the three modules 
showed any significant enrichment in modules resulting from 10 random sets analyzed, see Table S3.  

Secondly, we created 10,000 random gene sets (again consisting of 455 genes each), and determined 
how many gene-pairs remained after applying the same thresholding we used to retain ASD gene-pairs, 
as will be described later. Results are shown in Figure S2. 

 


