Supplemental materials

Figure S1. GLI2 is expressed in FLT3-ITD AML clinical specimens.

Figure S2. Flt3/ITD-SmoM2 transgenic mice express Hh pathway genes and develop clinically relevant AML.

Figure S3. Specific bone marrow hematopoietic stem cell and myeloid progenitor compartments are maintained in Flt3/ITD-SmoM2 mice.

Figure S4. Leukemia formation in Flt3/ITD-SmoM2 mice is cell intrinsic.

Figure S5. GSEA reveals increased STAT5 signaling in Flt3/ITD and anti-apoptotic features in Flt3/ITD-SmoM2 mice.

Figure S6. The combination of sorafenib and IPI-926 limit the growth of *FLT3*-ITD AML.

Figure S7. Hh signaling impacts FLT3-ITD at the level of STAT5.

Figure S8. IPI-926 inhibits the expression of Hh target genes in Flt3/ITD-SmoM2 bone marrow cells.

Table S1. Leukemic organ infiltration.

Table S2. Primer sequences.

Figure S1. GLI2 is expressed in FLT3-ITD AML clinical specimens. (A) Correlation of *GLI1* and *GLI2* expression in *FLT3*-ITD AML patients from TCGA AML dataset. (B) *GLI1* gene expression in AML patient samples relative to normal human CD34+ cells. (C) Survival of patients with *FLT3*-ITD AML grouped by *GLI2* expression. Patients with *FLT3*-ITD were stratified on the basis of *GLI2* expression as high (above average) and low (below average) groups [average=204, expression determined by RNAseq (RSEM)]. *GLI2* mRNA expression data and *FLT3* mutation status were obtained from cBioPortal (www.cbioportal.org), and clinical data including survival were obtained from TCGA (cancergenome.nih.gov). *P* value was determined with the Gehan-Breslow-Wilcoxon test. (D) Survival of patients with *FLT3*-ITD AML grouped by *GLI1* expression.

Figure S2. Flt3/ITD-SmoM2 transgenic mice express Hh pathway genes and develop clinically relevant AML. (A) Genotyping of Flt3/ITD-SmoM2 transgenic animals. Each lane represents a mouse genotype and each band the detected allele. (B) PCR showing excision of *Flt3-ITD* after poly(I:C) administration. (C) Peripheral blood flow cytometry of YFP expression after poly(I:C) administration. (D) *Gli1* and *Gli2* expression in mouse whole bone marrow cells (n=3). Data represent mean \pm SD. (E) *Gli1* expression in mouse bone marrow after SHH treatment (n=3). Data represent mean \pm SD. (F) Hematoxylin and eosin stained sections of lung and liver. Bars represent 50 μ M. (G) Peripheral red blood cell and platelet counts. Each data point represents one mouse.

Figure S3. Specific bone marrow hematopoietic stem cell and myeloid progenitor compartments are maintained in Flt3/ITD-SmoM2 mice. (A) Total number of immature HSPCs (n=3). Data represent mean \pm SD. n.s.=non-significant. (**B**) BrdU incorporation by primitive HSPC populations (n=3). Data represent mean \pm SD. n.s.=non-significant.

Α

Figure S4. Leukemia formation in Flt3/ITD-SmoM2 mice is cell-intrinsic. (A) Experimental schema. (B) Recapitulation of disease phenotype in bone marrow of original transgenic animals (left) and transplanted CD45.1 recipients (right). (C) Kaplan Meier survival curve of recipient mice after poly(I:C) administration compared to transgenic Flt3/ITD-SmoM2 mice. (D) YFP expression in bone marrow of transplanted mice.

Figure S5. GSEA reveals increased STAT5 signaling in Flt3/ITD and anti-apoptotic features in Flt3/ITD-SmoM2 mice. (A) GSEA analysis comparing Flt3/ITD and wild type mice using gene sets representing STAT5 signaling. (B) GSEA analysis comparing Flt3/ITD-SmoM2 and Flt3/ITD mice with gene sets representing anti-apoptosis. (C) PCR analysis of *Flt3/ITD* status in whole bone marrow and GMP cells of Flt3/ITD-SmoM2 diseased mice. Each lane represents an individual Flt3/ITD-SmoM2 mouse.

Figure S6. The combination of sorafenib and IPI-926 limit the growth of *FLT3*-ITD AML. (A) Expression of Hh components in AML cell lines. (B) Relative *GL11* and *GL12* expression in MV4-11 cells treated with IPI-926 (n=3). Data represent mean \pm SD. (C) Viable cell counts in drug-treated Molm-14 cells. (D) Viable cell counts after transfection of MV4-11 cells with *GL12* or control siRNA and treated with sorafenib 24 hours later (n=3). Data represent mean \pm SD. (E) Viable cell counts of MV4-11 cells treated with LDE225 and/or sorafenib (n=3). Data represent mean \pm SD. (F) Viable cell counts of MV4-11 cells after transfection of *SMO* or control siRNA followed 24 hours later with sorafenib (n=3). Data represent mean \pm SD. (G) Viable cell counts of MOLM-14 cells treated with SHH and sorafenib (n=3). Data represent mean \pm SD. (H) Relative colony formation of Molm-14 cells after drug treatment (n=3). Data represent mean \pm SD. (H) Relative colony formation of Molm-14 cells after drug treatment (n=3). Data represent mean \pm SD. (E) Data represent mean \pm SD. (F) Notice cell counts of MOLM-14 cells after drug treatment (n=3). Data represent mean \pm SD. (C) Note colony formation of Molm-14 cells after drug treatment (n=3). Data represent mean \pm SD. (H) Relative colony formation of Molm-14 cells after drug treatment (n=3). Data represent mean \pm SD. (F) Note cells (I) MV4-11, (J) Molm-14 cells, and (K) HL60 cells (n=3). Data represent mean \pm SD. n.s.=non-significant.

Figure S7. Hh signaling impacts FLT3-ITD at the level of STAT5. (A) Relative *GL11* and *GL12* expression in MV4-11 cells after sorafenib treatment (n=3). Data represent mean \pm SD. (B) Western blot showing protein expression in MV4-11 cells after SHH and/or sorafenib treatment. (C) Western blot of pSTAT5 and STAT5 expression in Baf3/ITD cells after drug and IL-3 treatment. (D) MTT assay of Baf3/ITD cells after treatment with sorafenib + IPI-926 with or without IL-3 (n=3). Data represent mean \pm SD.

Figure S8. IPI-926 inhibits the expression of Hh target genes in Flt3/ITD-SmoM2 bone marrow cells.

Genotype	Spleen	Bone Marrow	Liver	Lung	Kidney	Thymus
Flt3/ITD-SmoM2	3+	3+	normal	normal	1+	depleted
Flt3/ITD-SmoM2	3+	3+	3+	3+	1+	depleted
Flt3/ITD-SmoM2	3+	3+	1+	2+	normal	depleted
Flt3/ITD-SmoM2	3+	3+	2+	normal	normal	depleted
Flt3/ITD	1+	1+	1+	normal	normal	normal
SmoM2	normal	normal	normal	normal	normal	normal
SmoM2	normal	normal	normal	normal	normal	normal
WT	normal	normal	normal	normal	normal	normal

Table S1. Leukemic organ infiltration.

Normal = similar to wild type

Depleted = decreased tissue cellularity compared to wild type

1 + = low degree of infiltration of tissue with undifferentiated myeloid cells

2+ = intermediate degree of infiltration of tissue with undifferentiated myeloid cells

3+ = high degree of infiltration of tissue with undifferentiated myeloid cells

Table S2. PCR primers

Forward primer sequence (5' to 3')

Mouse genotyping

SmoM2	AAGTTCATCTGCACCACCG
Flt3- ITD	CTCTC GGAACTCCCACTTA
Mx1Cre	GCGGTCTGGCAGTAAAAACTA TC
loxp	CTTCGTATAATGTATGCTATACG

Mouse qRTPCR

Socs3	CCAAGAACCTACGCATCCAGTG	CGTGGGTGGCAAAGAAAAGG
Fos	CGAAGGGAACGGAATAAGATGG	AGACCTCCAGTCAAATCCAG
JunB	CAGCTACTTTTCGGGTCAGGG	GGCTAGCTTCAGAGATGCGC
<i>p57</i>	CAGCGGACGATGGAAGAACT	CTCCGGTTCCTGCTACATGAA
CyclinF	GCCTCTCGCTTCTTCAGCAT	GGCGGATGAAGAGCCAGAT
Pim1	GCCCTCCTTTGAAGAAATCC	GGACCTGGAGTCTGGAATGA
RPS16	CTTGGAGGCTTCATCCACAT	ATATTCGGGTCCGTGTGAAG
Mkp1	GTGCCTATCACGCTTCTCGG	TGGTTGTCCTCCACAGGGAT

Human qRTPCR

PTCH1	AATAAGGCTGAGGTTGGTCATGGTTAC	AGGGT
IHH	GGCAGCTGTCTCTACACACG	GGGCC
GL11	CCACGGGGAGCGGAAGGAG	ACTGG
SMO	GGTGTGGTTTGGTTTGTGGTCCTC	CCTGG
BETA		
ACTIN	ATCCACGAAACTACCTTCAACTCCAT	CATAC

CGTGGTGGTGGAAGGAAAG TAAGATGGATGGAAT CATTGCTGAAGGCTTTACTG TTGAAGAAGTCGTAGAAGTGG

Tagman probes (ABI)

Species	Gene	Probe I.D.
Human	GLI1	Hs01110766_m1
Human	PTCH1	Hs00181117_m1
Human	GLI2	Hs01119974_m1
Mouse	Gli1	Mm00494645_m1
Mouse	Rps18	Mm02601777_g1

Reverse primer sequence (5' to 3')

TCCTTGAAGAAGAT GTGCG TGCAGATGATCCAGGTGACT

GTGAAACAGCATTGCTGTCACTT TCGTATAGCATACATTATACG GG

TCCTGCTTGCTGATCCACATC