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Figure S1. Degree distribution of the school friendship network. The network has 2539

nodes, 20910 edges, and average degree 〈k〉 ≈ 8.2355.

I. FRIENDSHIP NETWORK

We implemented the budget-Susceptible-Infected-Susceptible model on a real network.

A school friendship network was considered with 2539 nodes and 20910 edges [1], obtained

from a public data set from Add Health [2]. Figure S1 shows the degree distribution of the

network, with an average degree 〈k〉 ≈ 8.2355.

II. SQUARE LATTICE

The dependence of the critical time (t∗) on the distance to the critical cost (c − c∗) is

shown in Fig. S2. A power law is also observed with an exponent −0.98± 0.03.

III. BUDGET FUNCTION

For simplicity, in the main text, we only consider the case where the budget function f(b)

is the Heaviside step function, Θ(b). This function is discontinuous for b = 0. To show that

the abrupt transition to the high epidemic regime is not a consequence of this discontinuity,

here we also consider a continuous budget function defined as

f(b) =

 0 , b < 0

1− exp (−b) , b ≥ 0 .
(1)
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Figure S2. Scaling of the critical time with the distance to the critical cost on a square

lattice. A power law is observed, t∗ ∼ (c− c∗)b, with b = −0.98±0.03. Simulations are performed

on a lattice with 10242 sites and q = qb = 0.8. Results are averages over 3600 samples.

Figure S3. Change in regime at the critical time. Evolution of the fraction of infected

individuals i(t) (red circles) and budget b(t) (blue crosses), for a fixed healing cost (c = 0.833)

above the critical cost, in the mean-field limit with the budget function defined by Eq. (1). The

data points are for numerical data obtained with the Runge-Kutta method of fourth order. The

recovery rate is q = 0.8, the average degree k = 4, and the infection rate is p = 0.5.

Using this budget function we numerically integrate the mean-field equations (Eqs. (1) and (2)

in the main text with q0 = 0 and therefore q = qb), using the Runge-Kutta method of fourth

order. As shown in Fig. S3, for certain values of the model parameters, a transition to a

high epidemic regime is observed. and this transition is discontinuous in the parameter

space, as evident from Fig. S4.
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Figure S 4. Discontinuous transition from low to high epidemic regime. Asymptotic

fraction of infected individuals i(∞) in the mean-field limit, for the budget function defined by

Eq. (1), for fixed cost (c = 0.833), average degree (k = 4), and recovery rate (q = qb = 0.8) as a

function of the infection rate p. A discontinuous transition from low to high epidemic regime is

observed.

IV. MODEL WITH PARTIAL COSTLESS HEALING

We can analyze the final state of a more general model with SIS dynamics and an ad-

ditional budget healing contribution, described by Eqs. (1) and (2) in the main text, with

q0 > 0. As in the main text we define τq0 = kp/q0 and notice that for τq0 ≤ 1 the fraction of

the infected tends to zero, independent of the budget contribution. Therefore, we can focus

on the τq0 > 1 regime and consider the different cases: (i) the initial fraction i(0) is smaller

or equal than i0(∞) = 1− (q0 + qb)/(kp) = 1− τ−1 for τ > 1 and (ii) the initial fraction is

greater than i0(∞) independent of τ . Demanding a stationary budget function db(t)/dt = 0

implies for the first case (i(0) ≤ i0(∞), τ > 1):

c∗ =
q0 + qb

qb[kp− (q0 + qb)]
. (2)

In the second case the critical cost needs to be large enough to keep the fraction of the

infected at the initial level. (As we shall see later, this is not always possible.) To do this

we search for the stationary state of Eq. (5) of the main text at the initial level i(0) ( where

i(0) > i0(∞), independent of τ):

c∗ =
1− i(0)

i(0)[kp(1− i(0))− q0]
. (3)
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The first case is a special case of the second one, as can be seen by setting imax = maxt(i0(t))

and defining c∗ in general as:

c∗ =
1− imax

imax[kp(1− imax)− q0]
. (4)

We can recover Eq. (2) by assuming imax = i0(∞) = 1 − τ−1. Eq. (4) only holds when

i(0) < 1− τ−1
q0

or c∗ is negative. Otherwise we cannot keep the fraction of the infected at the

initial level and another equilibrium will be reached. We note that this equilibrium must be

higher since it cannot be the case that the system with the higher initial infection level has

a smaller critical cost c∗.

When c > c∗ for all values of τ the system changes according to Eq. (5) in the main text,

which has the stationary points given by Eq. (8) of the main text. It is possible to further

analyze these stationary states using the boundary condition i(0) and the fact that c > c∗.

We can for instance give some general arguments about the relative sizes and the stability of

solutions under the constraint c > c∗. For the τ > 1 regime, one can show that the inequality

i(∞)− < i0(∞) < i(∞)+ is always fulfilled (at c = c∗ by definition i0(∞) = i(∞)+ in Eq. (2)

and i(0) = i(∞)− in Eq. (3)). The phase spaces of Eq. (5) of the main text (illustrated in

Fig. 6 of the main text) and the underlying SIS model illustrate the stability of i(∞)+.

However, with certain parameters it is also possible that the fraction of the infected stays

at the initial level (Eq. (4)) independent of τ . However, we note that in these cases c∗ must

be smaller than that given in Eq. (2) and thus the equilibrium infection level can not fall

below i0(∞). We can conclude that when c > c∗ and τq0 > 1, there is always an explosive

epidemic transition from a lower to a higher epidemic level.
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