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Table S1. Relative amounts of the different nitrogen functional groups, as

deduced by XPS measurements.

Nitrogen functional groups (%)

Sample

e Pyrrolic -~
Code Pyridinic N . . Quaternary N Pyridine-N-
(N-6) ('\‘I\fg)”don'c"\' (N-Q) oxide (N-O)
AS-600 13.9 83.9 - 2.2
AS-650 15 70.3 11.2 3.5
AS-700 15.8 58.3 21.3 4.5

AS-800 25.1 46.7 23.7 4.5
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Table S2. Comparison of the gravimetric specific capacitance of various carbon

materials in aqueous electrolyte using a two-electrode cell.

Material Electrolyte | Gravimetric capacitance (Fg™)

AS 650 1MH,SO, 254 (0.2AgY ~ 143 (20 A g This work

e -_-_-

AS-800 1MH,S0, 258 (0.2Ag") ~159 (80 A g™ This work

LN-600 (N-
doped carbon)

3DGO 6MKOH - ~165(33AgY)

-_-_-
nanosheets

High density
porous

graphene
macroform

N-carbon
SEIES

Carbon

6 M KOH 238 (0.1A g™ 200 ~181 (20 A g™ 4

nanocages 6 M KOH - ~185(100Ag)
Carbon
nanofibers

Activated
carbon 1MH,SO; - ~120 (525 A g )

nanoplates
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Hydrochar-
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Figure S1. (a) Nitrogen and carbon yields and (b) atomic ratios of nitrogen,
hydrogen and oxygen versus carbon for defatted soybean (dSB), defatted
soybean-derived hydrochar (H-dSB), and defatted soybean/glucose-derived

hydrochar (H-dSB/G).



Figure S2. (a) SEM image of AS-700, (b) high-magnification image of AS-600

and (c) its corresponding EDX mappings for carbon (red) and nitrogen (white).



300
"o 200+
< 100
8 ]
§ O
'S -100
o 4
& -200-
2 -300
8 ]
T T T T T T T T T (%-_400_ T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
Voltage (V) Voltage (V)
C) d)
300 - 300 -
-~ 200 _ 200+
(@)} Ny
| > |
< 100+ w100+
3 ] s |
c o
IS 0 - = 0 -
S -100- @ -100-
S ] & |
2 2001 © -200
S 1 = E
& -300 3 -300-
w T T T T T T T T T (%- T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
Voltage (V) Voltage (V)

Figure S3. Cyclic voltammograms in a two-electrode cell configuration at
different scan rates for (a) AS-600, (b) AS-650, (c) AS-700 and (d) AS-800.

Electrolyte: 1 M H,SO,.
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Figure S4. a) Enlargement of the voltage window examined by cyclic
voltammetry for the AS-600 sample, and b) cyclic voltammograms for the
positive and the negative electrode in a special two-electrode cell configuration
provided with a SME reference electrode. Scan rate: at 5 mV s™, electrolyte: 1M

H2SO,.

As can be seen in Figure S4b, the faradic redox reactions take place in the
potential range of - 0.4 to 0.1 V vs. SME involving both the positive and the
negative electrodes, which leads to the hump observed at cell voltages < 0.4-
0.5 Vin the CVs (Figure S4a) for the AS-600-based supercapacitor. This
behavior is similar to that reported by Raymundo-Pifiero et. al for N- and O-rich
seaweed-derived carbons *. As a result of the larger pseudocapacitance
contribution in the negative electrode, its working voltage window is smaller
than that of the positive electrode (by around 0.13-0.15 V regardless of the cell
voltage). In spite of this, the positive electrode does not undergo oxidation at
high potentials, as can be seen in Figure S4b, and works below the water
decomposition limit in 1M H,SOy (i.e. around 0.6 V vs. SME). Neither does

water reduction take place in the negative electrode, even though the



thermodynamic potential for water reduction is -0.62 V vs. SME in 1 M H,SOy,.

These results further support that carbon functionalization is an effective way to
extend the working voltage range in acidic electrolyte »**. Also worth mentioning
is that, as measured in this special 2-electrode cell, the surface area-normalized
capacitance of both the positive and the negative electrode experiences a 2-fold

increase from 800 to 650 °C, i.e. with increasing surface functionalization.
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Figure S5. Enlargement of the voltage window as evaluated by CD at 200 mA

g for (@) AS-650 and (b) AS-700. Electrolyte: H;SOj4.
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Figure S6. Fading of the specific capacitance of the microporous materials
during long-term cycling at a constant current of 5 A g™t in 1 M H,SO4

electrolyte.
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Figure S7. Comparison of the volumetric and gravimetric capacitances of AS-

600 and AS-800 in an aqueous electrolyte using data reported in the literature
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Figure S8. Cyclic voltammograms corresponding to the positive and the
negative electrode in a special two-electrode cell configuration provided with a
SME reference electrode for the different cell voltages. Scan rate: 5 mV s™,

electrolyte: 1 M Li,SOa,.
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Figure S9. (a) Frequency response and (b) Nyquist plot for the AS-800 porous

carbon. Electrolytes: 1 M Li,SO4 and 1 M H,SO4.
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Figure S10. Ragone plot that compares the AS-800 and AS-650 materials

developed in this work with data reported in the literature in H,SO,4 or KOH

aqueous electrolyte 134©7.1016.24-26



—_
O_.
M|

—@— AS-800 1 MLLi,SO,
—@—ref. 101 M LiZSO4
——ref. 101 M LiZSO4
ref. 26 1 M Na,SO,
—@—ref. 27 1 MLi,SO,
—4¢—ref. 28 1 MNa,SO,
—&—ref. 28 1 MNa,SO,
—v—ref. 201 MNa,SO,

Specific energy (Wh kg™)
80

10-1 LR L LR | L L |
10" 10° 10"

Specific Power (kW kg™)

Figure S11. Ragone plot that compares the AS-800 material developed in this

work with data reported in the literature in neutral aqueous electrolyte 1°262°,
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