

Figure S1, Related to Figure 3. Superimposed ¹H,¹⁵N HSQC spectra of ING2 PHD collected as first H3K4me3 peptide and then (1) were titrated in. Spectra are color coded according to the protein:peptide:(1) molar ratio.

SI Experimental Procedures

Synthesis - General

Calixarene **1** was purchased from TCI America and used as obtained. Lucigenin dye was purchased from Life Technologies and used as obtained. Low-resolution electrospray ionization mass spectrometry (LR-ESI-MS) was performed on a Finnigan LCQ MS, and High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) was performed on a Thermo Scientific LTQ Velos Orbitrap. Calixarene (3), (4), (6), and 5-phenyl-25, 26, 27, 28-tetrahydroxy-11-17-23trisulfonatocalix[4]arene (8) were made according to published procedures (Allen et al., 2014; Daze et al., 2012).

HPLC purifications

Synthetic peptides and compounds (2-7) were purified by RP-HPLC using a Shimadzu Prominence HPLC equipped with a preparative Apollo C18 column (Alltech, 5 μ m, 22 x 250 mm) or a Thermo-Dionex HPLC/MS equipped with a Luna C-18 column (Phenomenex, 5 μ m, 21.2 x 250 mm). Each instrument used a UV-Vis detector set to 280 nm. Compounds were purified by running a gradient from 90:10 0.1% TFA in H₂O:0.1% TFA in MeCN to 10:90 0.1% TFA in H₂O:0.1% TFA in MeCN over 35 minutes.

Synthesis of calixarenes (2), (5), and (7).

Compound (2)

Compound **monoamine** (25 mg, 3.7 x 10⁻⁵ mol) and 2-naphthoyl chloride (1.1 eq., 8 mg, 4.1 x 10⁻⁵ mol) were dissolved in 2.5 mL of 0.1 M phosphate buffer (pH = 8) and 100 uL of dimethylformamide then stirred at room temperature, overnight. The aqueous solution was extracted with dichloromethane (2 x 10 mL), and ethyl acetate (2 x 10 mL). The aqueous layer was evaporated to dryness under reduced pressure and the crude solid subjected to RP-HPLC purification, as outlined above. Fractions containing product were pooled and lyophilized to afford 9 mg (28% yield) as an off-white solid. NMR (300 MHz, D₂O, δ): 3.78 (br s, 2H), 4.0 (br s, 8H), 5.21 (d, 7.9 Hz, 1H), 6.85 (s, 2H), 7.02 (d, 8.2 Hz, 1H), 7.19 (d, 8.6 Hz, 1H), 7.25 (d, 8.6 Hz, 1H), 7.35 (s, 2H), 7.47 (s, 1H), 7.75 (s, 2H), 7.81 (s, 2H). LR-ESI-MS [M–H]⁻ calculated for C₃₉H₃₀NO₁₄S₃⁻ 832.1, found 832.3.

Compound (5)

Compound **monoamine** (20 mg, 2.9 x 10⁻⁵ mol) and benzoyl chloride (1.1 eq., 4 uL, 3.13 x 10⁻⁵ mol) were dissolved in 2.5 mL of 0.1 M phosphate buffer (pH = 8) and stirred at room temperature, overnight. The aqueous solution was extracted with dichloromethane (2 x 10 mL), and ethyl acetate (2 x 10 mL). The aqueous layer was evaporated to dryness under reduced pressure and the crude solid subjected to RP-HPLC purification, as outlined above. Fractions containing product were pooled and lyophilized to afford 11 mg (48% yield) as an off-white solid. NMR (300 MHz, D₂O, δ): 3.91 (br s, 4H), 4.07 (br s, 4H), 5.33 (s, 2H), 7.07 (m, 4H), 7.42 (s, 2H), 7.68 (s, 2H), 7.71 (s, 2H). LR-ESI-MS [M–H]⁻ calculated for C₃₅H₂₈NO₁₄S₃⁻ 782.1, found 782.3.

Compound (7)

Compound **diamine** (20 mg, 3.3×10^{-5} mol) and *p*-carboxybenzenesulfonyl chloride (1.9 eq., 13.6 mg, 6.3×10^{-5} mol) were dissolved in 2.5 mL of 0.1 M phosphate buffer (pH = 8) and stirred at room temperature, overnight. The aqueous solution was extracted with dichloromethane (2 x 10 mL), and ethyl acetate (2 x 10 mL). The aqueous layer was evaporated to dryness under reduced pressure and the crude solid subjected to RP-HPLC purification, as outlined above. Fractions containing product were pooled and lyophilized to afford 6 mg (16% yield) as an off-white solid. NMR (300 MHz, D₂O, δ): 3.84 (br s, 8H), 6.72 (d, 8.3 Hz, 4H), 6.88 (d, 8.3 Hz, 4H), 6.89 (s, 4H), 7.44 (s, 4H). HR-ESI-MS [M– 2H]^{2–} calculated for C₄₂H₃₂N₂O₁₈S4^{2–} 490.0271, found 490.0272.

Peptide Synthesis

Peptides were made using a CEM Liberty 1 microwave peptide synthesizer, using standard Fmocsolid phase synthesis employing HBTU as coupling agent and DIEA as activator base. Fmoc-Lys(me3)-OH was purchased from GL Biochem and all other reagents were purchased from Sigma-Aldrich or ChemImpex. Peptides were made as H3 1-12 sequences (H-ARTKQTARK(me₃)STGY- NH₂, H-ARTK(me₃)QTARKSTGY-NH₂ or H-ARTKQTARKSTGY-NH₂), with a N-terminal free amine, C-terminal amide and tyrosine added to the C-terminus to aid in UV detection for purification and concentration determination. Peptides were purified by HPLC as described above, and identity confirmed by ESI-MS. Concentration of peptide stocks was determined by dissolving the lyophilized solid into water and using the extinction coefficient of tyrosine at 280 nm (Spectramax M5, Molecular Devices).

Fluorescence Displacement Assay - General

Calixarene hosts were made in stock solutions from weighed solid and dissolved in dH₂O. All further dilutions were done using this stock. Lucigenin (LCG) was made from a stock 5 mM solution in dH₂O, and protected from light. 0.2 M phosphate buffer at pH 7.4 was made from the corresponding salts and used as is, 10 µL amounts were used in every well to furnish a final buffer concentration of 10 mM. Peptide solutions were freshly prepared and concentrations confirmed as outlined above. All titrations were performed in 96 well NUNC optically clear-bottomed, black-walled plates and read using a Spectramax M5 (Molecular Devices) plate reader.

Determination of Kassoc between calixarene and LCG

Using a calixarene stock solution, varying concentrations of calixarenes were made (0.05 μ M-50 μ M). The first well was a blank solution that contained 10 μ L 0.2 M phosphate buffer, 20 μ L (2.5 or 5 μ M) LCG and 170 μ L dH₂O. Subsequent wells (2-12) contained the same amounts except: 150 μ L dH₂O and 20 μ L calixarene (in increasing concentration). The plate emission was read (100 reads/well) between 445-600 nm, excitation set to 369 nm. The λ_{max} of the fluorescence readout was selected (485 nm) and this data was fit with the program Equilibria (available online at: http://www.sseau.unsw.edu.au) in order to determine the 1:1 binding constant.

Determination of Kassoc between calixarene and peptide

Similar to above, the first well in each row was a blank containing 20 μ L (2.5 or 5 μ M) LCG, 20 μ L (5 or 12.5 μ M) calixarene, 10 μ L 0.2 M phosphate buffer and 150 μ L dH₂O. Titration was performed as above except, using varying peptide concentrations (20 μ L, 5 μ M to 7 mM) and 130 μ L dH₂O. Fitting was done as outlined above in the program Equilibria, (Young and Jolliffe, 2012) provided that LCG and calixarene concentrations remain constant and using the determined K_{assoc} between calixarene and LCG as an input.

SI REFERENCES

Allen, H.F., Daze, K.D., Shimbo, T., Lai, A., Musselman, C.A., Sims, J.K., Wade, P.A., Hof, F., and Kutateladze, T.G. (2014). Inhibition of histone binding by supramolecular hosts. Biochem J *459*, 505-512.

Daze, K.D., Ma, M.C., Pineux, F., and Hof, F. (2012). Synthesis of new trisulfonated calix[4]arenes functionalized at the upper rim, and their complexation with the trimethyllysine epigenetic mark. Organic letters *14*, 1512-1515.

Young, P.G., and Jolliffe, K.A. (2012). Selective recognition of sulfate ions by tripodal cyclic peptides functionalised with (thio)urea binding sites. Org. Biomol. Chem. *10*, 2664-2672.