
Proc. Natl. Acad. Sci. USA
Vol. 90, pp. 4136-4140, May 1993
Biochemistry

Crystal structure of a ubiquitin-dependent degradation substrate: A
three-disulfide form of lysozyme

(proteolysis/ubiquitination/speciflcity determinant/stability)

CHRISTOPHER P. HILL*, NANCY L. JOHNSTON, AND ROBERT E. COHENt
Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90024-1570

Communicated by Howard K. Schachman, January 29, 1993 (received for review December 16, 1992)

ABSTRACT Covalent attachment of ubiquitin marks sub-
strates for proteolysis, but features that identify ubiquitination
targets such as chicken egg white lysozyme are poorly under-
stood. Recognition of lysozyme first requires reduction of
Cys-6 Cys-127, one of its four native disulfide bonds, and
Cys-6,Cys-127-carboxymethylated (6,127-rcm) lysozyme can
mimic this three-disulfide intermediate. The 6,127-rcm form of
lysozyme is known to retain a substantially native-like confor-
mation in solution, and we demonstrate that it is this folded
structure that is recognized for ubiquitination. Because native
lysozyme is not a substrate, differences between the native and
three-disulfide structures must include features responsible for
selective ubiquitination. The 1.9-A resolution crystal structure
of 6,127-rcm-lysozyme, reported here, affords a view of this
ubiquitin-dependent degradation substrate. Two conformers of
6,127-rcm-lysozyme were obtained in the crystal. These differ
uniquely from crystal forms of native lysozyme by displacement
of the C-terminal residues. The structures suggest that localized
unfolding at the C terminus of three-disulfide lysozyme allows
the complex ofE3a (ubiquitin-protein ligase) and E2 (ubiquitin-
carrier protein) to bind to a surface that includes Lys-1 and the
putative ubiquitination site Lys-13. From this we infer that the
N-terminal and internal substrate recognition sites on the
E3a-E2 complex are separated by -20 A.

Intracellular protein degradation is remarkable for its com-
bination of extreme selectivity and the ability to accommo-
date an enormous variety of substrates. Protein half-lives in
vivo span several orders of magnitude. Moreover, mutations,
translational errors, mislocalization, and chemical damage all
can lead to polypeptides that are rapidly degraded (1-5). How
such proteins are distinguished from their long-lived coun-
terparts is largely unknown. In eukaryotes, a major route for
intracellular proteolysis involves covalent modification of
protein lysine(s) with the protein ubiquitin (Ub) and subse-
quent degradation by the 26S Ub-dependent protease com-
plex (6-8). Specificity resides, at least in part, with the
Ub-protein ligase that marks a substrate for recognition by
the protease. This process is best understood for the E3a
ligase from rabbit reticulocytes and the related UBRI-
encoded enzyme from yeast (9-13).
One important E3a recognition determinant is the sub-

strate's N terminus, where only a subset of amino acids is
permissive for ubiquitination (9-12). A permissive N termi-
nus is not suffi'cient, however, and the relative orientations
and distances that separate lysine ubiquitination sites from
N-terminal and other, as yet undiscovered, determinants also
are likely to be critical for recognition (14-17). Progress in
this area has been hampered by the lack of Ub-dependent
degradation substrates of defined structure. Indeed, to obtain
competent in vitro substrates, proteins generally must be

altered conformationally (16, 17). This generalization applies
to chicken egg white lysozyme, where we have found that
efficient ubiquitination requires prior reduction of one of the
four native disulfide bonds, C`ys-6 Cys-127. A reduced and
carboxymethylated derivative, 6,127-rcm-lysozyme, can
mimic this three-disulfide degradation intermediate (17).
Three-disulfide lysozyme offers a unique opportunity to
probe ubiquitination specificity because, unlike other E3a
substrates described thus far, it retains a substantially struc-
tured, native-like conformation (17-19). We report here the
x-ray crystal structure of 6,127-rcm-lysozyme determined to
a resolution of 1.9 A. An experiment that relates this struc-
ture to the substrate conformation recognized in solution by
Ub-protein ligase is presented, and the results are discussed
in terms of structural determinants for ubiquitination.*

EXPERIMENTAL PROCEDURES
Protein Crystallization. The 6,127-rcm derivative of

chicken egg white lysozyme (EC 3.2.1.17; Sigma, grade I)
was prepared essentially as described (17), but with addi-
tional chromatography on a PolyCAT A (The Nest Group,
Southboro, MA) cation-exchange column. Stock solutions
were dialyzed against water and concentrated to 9 mg/ml in
Centricon 10 microconcentrators (Amicon). Crystals were
grown by the hanging drop method under conditions similar
to those used to obtain tetragonal crystals of unmodified
lysozyme. The reservoir solution (1 ml) was 7% NaCl with 50
mM sodium acetate at pH 3.8, and the hanging drops con-
tained 10 ,ul of a 1:1 mixture of reservoir and protein stock
solutions. Typically, crystals appeared after 2 days and grew
to 0.3 x 0.4 x 0.5 mm3 within a week. The crystals belonged
to orthorhombic space group P212121 with cell dimensions a
= 77.7 A, b = 81.3 A, and c = 38.0 A.
Data Collection and Structure Determination. X-ray data

extending to 1.9-A resolution were collected from two crys-
tals with a R-AXIS II imaging plate detector and a Rigaku
RU-200 rotating anode source (CuKa radiation at 50 kV and
150 mA). Each frame, in which the crystal was oscillated by
1.50, was acquired over 12 min; =35 frames were collected
from each crystal before there was significant deterioration
from radiation damage. Processing employed the MSC soft-
ware package. The chicken egg white lysozyme structure of

Abbreviations: Ub, ubiquitin; 6,127-rcm, Cys-6,Cys-127-carboxy-
methylated; rcmA and rcmB, the two molecules per asymmetric unit
in 6,127-rcm-lysozyme crystals; E3, ubiquitin-protein ligase; E2,
ubiquitin carrier or conjugating protein; (GlcNAc)3, N,N',N'-
triacetylchitotriose.
*Present address: Department of Biochemistry, University of Utah,
Salt Lake City, UT 84132.
tTo whom reprint requests should be addressed at: Molecular
Biology Institute, University of California, 405 Hilgard Avenue,
Los Angeles, CA 90024-1570.
tCoordinates and diffraction data have been deposited in the Protein
Data Bank, Chemistry Department, Brookhaven National Labora-
tory, Upton, NY 11973 (reference lRCM) (20, 21).
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Strynadka and James (22) was used as a starting model for
6,127-rcm-lysozyme structure determination. Water mole-
cules and side chains with multiple conformations were
deleted from the starting model, as were the first 14 and last
6 amino acids. The 6,127-rcm-lysozyme crystals are similar to
those of native lysozyme grown under similar conditions,
although the latter are of the tetragonal space group P43212
with cell dimensions of a = b = 79.24 A and c = 37.83 A (22).
The P212121 space group of the 6,127-rcm-lysozyme is related
to P43212 by one two-fold rotation axis. Consideration of this
symmetry relationship enabled two copies of the truncated
native lysozyme molecule to be placed within the 6,127-rcm-
lysozyme asymmetric unit. Rigid-body refinement with
XPLOR (23) gave an R factor of 26.7% against all 3.0- to 8.0-A
data. This solution was confirmed by rotation function and R
factor searches using XPLOR. One cycle of simulated anneal-
ing refinement using the "slow-cool" protocol was followed
by cycles of positional and B factor refinement, with several
rounds of manual map-fitting using the program FRODO (24)
implemented on an Evans and Sutherland ESV graphics
station (Salt Lake City). The entire asymmetric unit was
inspected in difference maps, water molecules were added,
and the protein model was rebuilt where appropriate. Data
collection and final refinement statistics are in Table 1.

Ub-Protein Conjugation. Ub-activating enzyme (El) and
the 14-kDa Ub carrier protein (E214K) were purified from calf
thymus and rabbit reticulocytes, respectively (25, 26), and
ubiquitination assays were done essentially as described (17).
Each 10-,u1 reaction mixture in 50 mM Tris HCl (pH 7.6)
contained 2.5 mM dithiothreitol, 2 mM ATP, 5 mM MgCl2, 5
mM phosphocreatine, 30 mU creatine phosphokinase, 3 mU
inorganic pyrophosphatase, and a Ub-depleted rabbit retic-
ulocyte extract (21 ,g of protein; see ref. 17) supplemented
with S ,g of bovine Ub (Sigma), 57 nM El, and 38 nM E214K.
After a 5-min preincubation at 37°C with 2 ,uM Ub-aldehyde
to prevent conjugate breakdown by endogenous Ub-protein
isopeptidases (16), 1251-labeled substrate (0.4 ,ug) was added
and the incubation was continued for 1 hr. Products were
visualized after SDS/polyacrylamide gel electrophoresis and
autoradiography (17).

a ubiquitination assay, a few percent of 6,127-rcm-lysozyme
is in an unfolded state (Fig. 1A). As with unmodified lyso-
zyme (28), an oligosaccharide ligand can shift this equilibrium
to stabilize the folded form of the 6,127-rcm derivative (Fig.
1A), but such stabilization has no effect upon lysozyme
ubiquitination (Fig. 1B). This same result is obtained over a
wide range of lysozyme concentrations, where the substrate
is well below the apparent Km of Ub-protein ligase (unpub-
lished data). Thus, the relatively limited structural differ-
ences between the folded conformations of native lysozyme
and 6,127-rcm-lysozyme must include features used to dis-
tinguish ubiquitination targets from other proteins.

Crystal Structure of 6,127-rcm-Lysozyme. The 6,127-rcm-
lysozyme was crystallized into space group P212121, different
from that of native lysozyme crystals from which high-
resolution structure coordinates are available. We were able
to solve the structure by molecular replacement with a model
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RESULTS AND DISCUSSION
The Folded Form of 6,127-rcm-Lysozyme Is a Ubiquitination

Substrate. The 6,127-rcm derivative of lysozyme is thermo-
dynamically less stable than unmodified lysozyme (18, 19),
which might suggest that it is the unfolded protein that is
recognized by the Ub-protein ligase, E3a. We have found
that this is not the case. At 37°C under conditions that mimic

Table 1. Data collection and refinement statistics
Parameter

Resolution range, A
No. of reflections
Completeness, %
Rsym*
Rfactort (all data)
No. of water molecules included
B factor

Molecule A average, A2
Molecule B average, A2
Solvent average, A2

rms deviations from ideal geometry
Bond distances, A
Bond angles, degrees
Dihedral angles, degrees

rms deviation of main-chain bond B values, A2

*Rsym = (1I1 - Iavl)/YIav.
tRfactor = (Y|IIFobsI - IFcaIcI|)/I|FobsI.

Value

1.9-10.0
18,295
93.8
0.042
0.185
133

24.7
23.9
36.3

0.014
2.8
24.3
1.7

45 -
36 -

29 -

24 -

20 -
(GIcNAc)3, mM 0

... ..........

........

0.05 0.5 0 0.05 0.5

FIG. 1. Ubiquitination of lysozyme does not depend upon global
unfolding. (A) Thermal denaturation of 6,127-rcm-lysozyme in 50
mM sodium 3-(N-morpholino)propanesulfonate buffer (pH 7.0) was
monitored by the absorbance change at 280 nm (19), and the data are
presented as the fraction of protein in the unfolded state without (o)
or with (e) 1.0 mM N,N',N"'-triacetylchitotriose [(GlcNAc)3]. The
ligand stabilizes the protein, increasing its melting transition tem-
perature from 47.6°C to 52.7°C. (B) Ub conjugation assays employed
1251-labeled lysozyme (1 x 105 cpm, lanes 1-3) or 6,127-rcm-
lysozyme (1.4 x 105 cpm, lanes 4-6) with 0, 0.05, and 0.5 mM
(GlcNAc)3 as indicated; native lysozyme and 6,127-rcm-lysozyme
under these conditions are saturated by -0.05 mM (GlcNAc)3 (ref.
27; unpublished data). Note that by inclusion of 2.5 mM dithiothreitol
in these reactions, 1-2% of the native lysozyme is in the three-
disulfide form (17). Conjugates (>20 kDa) were visualized after
SDS/polyacrylamide gel electrophoresis and autoradiography. Po-
sitions of molecular mass markers (kDa) are to the left of the gel;
bands corresponding to the 1251-labeled substrates (14 kDa) were
overexposed and are not shown.
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FIG. 2. Comparisons of 6,127-rcm-lysozyme and native chicken egg white lysozyme crystal structures. The main-chain tracing from the
1.75-A native lysozyme structure (22) is shown in green superimposed upon the two 6,127-rcm-lysozyme conformers (blue and red) determined
to 1.9 A. Where the structures coincide, they appear white; disulfide bonds are shown only for the native structure, and are in green. The C
termini, N termini, and active site are indicated. The Cys-6CWy`s-127 disulfide, broken in the 6,127-rcm derivative, is identified by the arrow.
The Lys-13 ubiquitination site (not shown here; see text) extends from the prominent helix (residues 5-15) that is linked via the C's-6 Cys-127
disulfide to the C terminus. All three structures are nearly identical except for several residues at the C termini.

of native lysozyme that had been determined from crystals
belonging to space group P43212 (22). The resultant 1.9-A
resolution atomic model for 6,127-rcm-lysozyme includes
two molecules per asymmetric unit and has been refined to an
R factor of 0.185 (Table 1).

Overall, the conformations of 6,127-rcm-lysozyme and
native lysozyme are extremely similar, and significant devi-
ations (i.e., displacements > 1.0 A) in the polypeptide
backbones are limited to only a few regions. Fig. 2 shows the
main-chain polypeptide tracings for both of the 6,127-rcm-
lysozyme molecules in the asymmetric unit, rcmA and rcmB,
superimposed upon the 1.75-A resolution native lysozyme
structure obtained from tetragonal crystals (22). Differences
are slight except at the C terminus and, to a lesser extent, for
a short peptide segment centered about residue 71 (regions II
and IV in Fig. 3 Upper Left). Comparisons with the 1.5-A
native lysozyme structure obtained from triclinic crystals (29,
30)§ revealed deviations for two additional regions centered
about residues 47 and 101 (Fig. 3 Upper Right). For regions
I-III, similar main-chain deviations are observed between the
native lysozyme structures (Fig. 3 Lower Left, tetragonal vs.
triclinic), whereas only regions I and IV differ between the
two 6,127-rcm-lysozyme molecules (Fig. 3 Lower Right,
rcmA vs. rcmB). Positional differences within the pairs of
native or 6,127-rcm-lysozyme structures are unequivocal
evidence of conformational mobility. Note, however, that
region IV of the native lysozyme main chain appears fixed
(Fig. 3 Lower Left). Thus, upon Cys-6 Cys-127 reduction and
carboxymethylation, only the C terminus is seen to deviate
from the conformations accessible to lysozyme in the native
state.
Although Cy's-6 Cy's-127 disulfide cleavage frees lyso-

zyme's C terminus from its interaction with the body of the
protein, the position of the N-terminal peptide that encom-
passes Cys-6 is essentially unchanged. An inventory of the
contacts in native lysozyme made by residues near the N and
C termini shows that this might be expected. Other than the
Cys-6 Cys-127 disulfide itself, few interactions stabilize the
native conformation of lysozyme's five C-terminal residues,
which contribute to only 4 hydrogen bonds as compared to 11
for the first five (N-terminal) residues.

§Brookhaven Protein Data Bank reference 2LZT.

Destabilization of the native conformation at the C termi-
nus of 6,127-rcm-lysozyme also must be due in part to
electrostatic repulsion of the side chain carboxylates of
carboxymethylcysteines 6 and 127. In rcmA and rcmB,
residue 127 is oriented to position its side chain into solvent
and away from the buried hydrophobic environment of
Cys-127 in native lysozyme. These new conformations entail
a redirection of the polypeptide backbone, as is evident in
Fig. 2. For Cys-6, however, positions of the main-chain and
Cp atoms are nearly identical for native lysozyme and 6,127-
rcm lysozyme. Placement of the Cys-6 carboxymethyl moi-
eties within the model was precluded by weak electron
density, however, which indicates that this side chain is quite
mobile.

Conformational Flexibility of the C-Terminal Residues. The
conformations of the C-terminal portions of rcmA and rcmB
differ significantly from each other and from the native
structure. These residues therefore are expected to be mobile
in solution, and inspection of lattice contacts suggests that
these motions may be much larger when free ofthe crystalline
environment. As illustrated in Fig. 4, the last five residues of
6,127-rcm-lysozyme have contacts to symmetry-related mol-
ecules. These contacts are similar for rcmA and rcmB and, in
each case, are as extensive as the noncovalent intramolecular
interactions. Thus, the deviations of the 6,127-rcm-lysozyme
C-terminal residues seen from the crystal structures may
severely underestimate the true range of motion in solution.

In contrast, and despite the absence of restrictive lattice
contacts (see Fig. 4), the conformations of the N-terminal
residues are essentially identical. Two-dimensional NMR
measurements by Radford et al. (18) support our conclusion
that the N-terminal portion of 6,127-rcm-lysozyme is virtu-
ally the same as that of the native protein. From an immu-
nochemical study, however, it appeared that the 6,127-rcm-
lysozyme N-terminal region may be distorted relative to the
native conformation (19). The immunochemical and struc-
tural data can be reconciled if the N-terminal epitopes that
were probed also included Cys-6 or distal portions of the
antigen such as its C terminus.

Recognition by Ub-Protein Ligase. Although movement of
the Leu-129 side chain was apparent from the NMR study of
6,127-rcm-lysozyme, whether there was a more extensive
rearrangement of the C terminus could not be determined

4138 Biochemistry: Hill et al.
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FIG. 3. 6,127-rcm-lysozyme conformation differs uniquely from native lysozyme at its C terminus. Plots of the main-chain rms deviations
per residue are shown for all pairwise comparisons of the two 6,127-rcm-lysozyme forms (rcmA and rcmB) and two crystal forms of native
lysozyme [tetragonal (22) and triclinic (29, 30)]. For comparisons of 6,127-rcm vs. native forms (Upper Left and Upper Right), deviations for
rcmA are plotted above the horizontal axis and, for rcmB, below the axis. Regions of significant displacement are labeled I-IV. Deviations
between the 6,127-rcm and native lysozymes at sites I, II, and III are also seen between the two native forms alone (Lower Left) and reflect
conformational flexibility within the native protein. However, at the C-terminal five residues (region IV), both 6,127-rcm forms adopt
conformations unavailable to native lysozyme.
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FIG. 5. Unmasking of E3a Ub-protein ligase recognition determinants on lysozyme by Cys-6 Cy's-127 disulfide cleavage. Rearrangement
of the C terminus in three-disulfide lysozyme was modeled from the native structure (22) by elimination of the C'ys-6 Cys-127 disulfide bond
and rotation about the N-Ca bond of Gly-126. The spacefilling models depict lysozyme before (A) and after (B) the disulfide cleavage and bond
rotation. The cleft formed by rearrangement of the C-terminal peptide may allow binding of the Ub-protein ligase complex and give access to
Lys-13. Side chains for Lys-1 and Lys-13 are indicated, and the C, 0, N, and S atoms are colored green, red, blue, and yellow, respectively.

rcm-lysozyme structure will assist in the design of peptide
and protein probes to better define these specificity deter-
minants.
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