Supplementary Information

Structural basis for Ca²⁺-mediated interaction of the perforin C2 domain with lipid membranes

Hiromasa Yagi^{1,§}, Paul J. Conroy^{2,3,§}, Eleanor W. W. Leung¹, Ruby H. P. Law^{2,3}, Joseph A. Trapani^{4,5}, Ilia Voskoboinik^{4,5,6}, James C. Whisstock^{2,3} and Raymond S. Norton^{1,*}

¹Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia,

²Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

³ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.

⁴ Cancer Immunology Program, Peter MacCallum Cancer Centre, VIC 3002, Australia.

⁵ Microbiology and Immunology, The University of Melbourne, VIC 3052, Australia.

⁶ Department of Genetics and Department of Pathology, The University of Melbourne, VIC 3052, Australia.

Figure S1. ¹H-¹⁵N SOFAST-HMQC spectra of the crystal and the NMR constructs (A) Central regions of the 2D NMR spectra of the constructs for used for crystallography (C2 quad₄₁₀₋₅₃₅; left) and NMR (C2 quad₄₁₀₋₅₂₆; right) studies. In the C2 quad₄₁₀₋₅₃₅, the cross-peaks of the extra residues at C-terminal (marked by asterisks) are observed as intense resonances in the regions of random-coil chemical shift, indicating highly flexible. (B) Backbone resonance assignments of the C2 quad₄₁₀₋₅₂₆. The cross-peaks of

backbone amides are labelled with the amino acid type and sequence number; this construct consists of residues 410-526 with $Gly + His_6$ tag at C-terminal (Fig. 1 in the main text)

Figure S2. Titration of the C2 D491N mutant with Ca^{2+} . Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 D491N mutant recorded with increasing [Ca²⁺]. Spectra were processed identically and plotted with the same contour levels. Resonance colours correspond to different [Ca²⁺] shown in the same colour in the top-left corner. The chemical shift change patterns are shown as black arrows, and intensity changes are roughly represented by gradient.

Figure S3. Titration of the C2 D483N mutant with Ca^{2+} . As per Figure S2, except for 150 μ M ¹⁵N-labelled C2 D483N mutant.

Figure S4. Titration of the C2 D429N mutant with Ca^{2+} . As per Figure S2, except for 150 μ M ¹⁵N-labelled C2 D429N mutant.

Figure S5. Titration of the C2 D435N mutant with Ca^{2+} . As per Figure S2, except for 150 μ M ¹⁵N-labelled C2 D435N mutant.

Figure S6. Titration of the C2 D490N mutant with Ca^{2+} . As per Figure S2, except for 150 μ M ¹⁵N-labelled C2 D490N mutant.

Figure S7. Comparison of C2 quad₄₁₀₋₅₂₆ with the C2 D490N mutant at 30 mM [Ca²⁺]. Overlay of ${}^{1}\text{H}{}^{-15}\text{N}$ SOFAST-HMQC spectra of the C2 quad₄₁₀₋₅₂₆ (black) and the D490N mutant (red).

Figure S8. Titration of the C2 quad₄₁₀₋₅₂₆ with DPC in the presence of 30 mM [Ca²⁺]. Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 quad₄₁₀₋₅₂₆ recorded with increasing [DPC] in the presence of 30 mM [Ca²⁺]. Resonance colours correspond to different [DPC] as shown at the left of the spectra. Significantly perturbed resonances upon addition of DPC are labelled.

Figure S9. Titration of the C2 quad₄₁₀₋₅₂₆ with DPC in the absence of Ca²⁺. Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 quad₄₁₀₋₅₂₆ recorded with increasing [DPC]. Resonance colours correspond to different [DPC] as shown at the left of the spectra. Resonances indicative of degradation or aggregation appeared in the central region of the spectra at 3 mM [DPC] and intensified at 10 mM [DPC].

Figure S10. Titration of the C2 quad₄₁₀₋₅₂₆ with DPC in the presence of 2 mM [Ca²⁺]. Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 quad mutant recorded with increasing [DPC]. Resonance colours correspond to different [DPC] as shown at the left of the spectra. No significant CSPs were observed upon adding DPC except for the C-terminal residue, but, the C-terminus is not near the CBRs, indicating non-specific interaction with DPC micelles. In addition, resonances indicative of degradation or aggregation gradually increased with increasing [DPC].

Figure S11. Interaction of the C2 D491N mutant with DPC micelles. Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 D491N mutant recorded with increasing [DPC] at 30 mM [Ca²⁺]. Spectra were processed identically and plotted with the same contour levels. Resonance colours correspond to different [DPC] shown in the same colour on the left side of spectra. No significant CSPs upon adding DPC were observed in the resonances of backbone amides, but a side chain amide resonance of N454 was clearly perturbed.

Figure S12. Interaction of the C2 D429N mutant with DPC micelles. Overlay of ¹H-¹⁵N SOFAST-HMQC spectra of 150 μ M ¹⁵N-labelled C2 D429N mutant recorded with increasing [DPC] at 30 mM [Ca²⁺]. Spectra were processed identically and plotted with the same contour levels. Resonance colours correspond to different [DPC] shown in the same colour on the left side of spectra. No significant CSPs upon adding DPC were observed and resonances indicative of degradation or aggregation gradually increased with increasing [DPC].

Figure S13. Interaction of the C2 D435N mutant with DPC micelles. As per Figure S12, except for 150 μ M¹⁵N-labelled C2 D435N mutant.

Figure S14. Interaction of the C2 D483N mutant with DPC micelles. As per Figure S12, except for 150 μ M¹⁵N-labelled C2 D483N mutant.

Figure S15. Interaction of the C2 D490N mutant with DPC micelles. Overlay of ${}^{1}\text{H}{}^{15}\text{N}$ SOFAST-HMQC spectra of 150 μ M ${}^{15}\text{N}$ -labelled C2 D490N mutant recorded with increasing [DPC] at 30 mM [Ca²⁺] concentration. Spectra were processed identically and plotted with the same contour levels. Resonance colours correspond to different [DPC] shown in the same colour on the left side of spectra. Significantly perturbed resonances upon addition of DPC are labelled. The same resonances of the C2 quad₄₁₀₋₅₂₆ were perturbed with increasing [DPC].