Supporting Information

The exact solution to the equilibrium frequency

Here we describe how to solve (24) exactly in one dimension, i.e., the Fisher-KPP equation with piecewise
constant selection. Let p(t,z) be the proportion of the allele under spatially varying selection s(z) in one
dimension, so that

Aplt, ) = gJQagp(t, ) + ps(@)p(t, z)(1 — p(t, ).
The stable distribution ¢(z) = lim;—, p(¢, ) then solves
P¢(z) = —2s(x)p(x)(1 — ¢(x)) /02, (60)

with appropriate boundary conditions. First rescale space by o/v/2 so the 02/2 term disappears. If we now
assume that s(x) is piecewise constant, s(z) = s; for « € [x;, x;41), with zg = —oc0 and z,,12 = 00, then the
equation is integrable: if we multiply through by 20.¢(z) and integrate, then we get that

@u0(e))? = = [ 25(2)0@)1 — D)0l (61)
= —si6(x)? (1 - §¢(x)> C Ky forz € 14, mi11), (62)

if we define
K = —siolan)? (1= 20(01)) — @uo(ei) (63

For ease of reference, we define
2
V(o) = s (1-50) + K.

Note that V;/(0) = V/(1) = 0, that V;(0) = K; and V;(1) = K; + s;/3. We will always have that V(¢) < 0.
(We have then that 92¢ = —95V (¢), the equation of motion of a particle in potential V. Also note that
this implies “conservation of energy”, i.e., (0,¢(x))% + V(é(x)) is constant.) Rearranging, we get that
dx = d¢/+/—V (¢), so where ¢(z) is monotone, the inverse is

o(0) = algt) & [ —SL_
o V()

For each 4 then define the elliptic function

Ay
ot V/Vi(®)
where take the positive branch of the square root, and ¢; will be chosen later. Then we have that z(¢) —
x(po) = £(F(¢) — F(¢o)), or for an appropriate xo,

p(x) = F~' (F($(x0)) £ (z — m9)) .

We clearly want lim, o 0:¢(£z) = 0, and lim,_,~ ¢(£z) to be zero or one depending on the sign of
sp and 8,4+1. Since (9;¢(z))? = —V(x), this implies that if sp < 0, then Ko = 0, while if so > 0 then
Ky = s0/6; and likewise for K, 41.

We also require that ¢(x) and ¢'(z) are continuous. Continuity of ¢'(z) is equivalent to Vi(z;y1) =
Vit1(xit1), which we can rearrange to find an equation for K;11 in terms of K; and ¢(x;41):

Kiy1 — Ki = (5i — si11)(2i41)° (1 — 2¢(zi11)/3).

Fi(¢) = (64)
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What about the frequency at the points the selection changes, ¢(x;)? Well, if ¢(z) is monotone on [z;, ;1)
then we can without loss of generality take ¢; = 0 or 1 depending on the sign of s;. Otherwise, let ¢} be
the (unique) root of V; in [, i+1), so Vi(¢7) = 0. In this case, ¢} is the maximum or minimum of ¢ in the
interval: if s > 0, then ¢; = max{¢(z) : « € [z;, x;41)}. Recall we defined F; using ¢}; now using the fact that
¢ is monotone with the opposite sign on either side of ¢}, x;11—x; = F;j(¢(xiy1))—Fi(¢7)+Fi(d(x;))— Fi(0F),
and that F(¢}) = 0, we know that the length of the ith stretch is

Tiy1 — @ = £ (Fi(o(xi)) + Fi(o(zit1))) -

Note that all the 4’s are easily relatable to the signs of s;. If we knew ¢(z1) and ¢'(z1), then we’d be able to
solve the equations for ¢(x;) and K; recursively upwards. In some cases, such as [9], we can infer ¢(0) and
0.9(0) by spatial symmetry. In other cases, we are only given ¢(—o0) and ¢(c0), and have to work inwards
from the ends.

Doing the integrals

An important ingredient in the above method is the integral (64), to which a method for solving the Korteweg-
de Vries equation can be applied [37]. Recall that V;(¢) = s;¢%(1 — 2¢/3) + K;, with K; = V;(0) chosen to
match V' at the boundaries; since we’re just working within an interval with s constant, we can rescale space
by v/2s;/0, so that s and o drop from the equation. We then want to integrate

dp d
V-V(9) V(1 —26/3)+ K

over a domain where V is always negative. Let ¢?(1 — 2¢/3) + K = (a — ¢)(¢ — 8)(¢ — ~), and change
variables first to y? = (a — ¢), and then to z = y/\/a — j3, so that

do _ —2dy
VR =20/3)+ K /(a—B—y>)(a—7—y?)
—2dx

T Va- /-1 - 8%

with $? = (o — 8)/(a — 7). Now Jacobi’s incomplete elliptic integral of the first kind is defined by

F(x; k

* dt
’:/0 N

and the Jacobian elliptic function sn(z; k) is the inverse: F(sn(z;k);k) = x. As k — 0, sn(z; k) — sin(z),
while as k — 1, sn(z; k) — sinh(z).

More information about the simulations

In tables S1 and S2 we provide additional details regarding the simulations we used to validate the theory
in figures 4 and 5.
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