
Supporting Information

The exact solution to the equilibrium frequency

Here we describe how to solve (24) exactly in one dimension, i.e., the Fisher-KPP equation with piecewise
constant selection. Let p(t, x) be the proportion of the allele under spatially varying selection s(x) in one
dimension, so that

∂tp(t, x) =
µ

2
σ2∂2

xp(t, x) + µs(x)p(t, x)(1− p(t, x)).

The stable distribution φ(x) = limt→∞ p(t, x) then solves

∂2
xφ(x) = −2s(x)φ(x)(1− φ(x))/σ2, (60)

with appropriate boundary conditions. First rescale space by σ/
√

2 so the σ2/2 term disappears. If we now
assume that s(x) is piecewise constant, s(x) = si for x ∈ [xi, xi+1), with x0 = −∞ and xn+2 =∞, then the
equation is integrable: if we multiply through by 2∂xφ(x) and integrate, then we get that

(∂xφ(x))2 = −
∫ x

2s(x)φ(x)(1− φ(x))∂xφ(x)dx (61)

= −siφ(x)2

(
1− 2

3
φ(x)

)
−Ki for x ∈ [xi, xi+1), (62)

if we define

Ki = −siφ(xi)
2

(
1− 2

3
φ(xi)

)
− (∂xφ(xi))

2. (63)

For ease of reference, we define

Vi(φ) = siφ
2

(
1− 2

3
φ

)
+Ki.

Note that V ′i (0) = V ′i (1) = 0, that Vi(0) = Ki and Vi(1) = Ki + si/3. We will always have that V (φ) ≤ 0.
(We have then that ∂2

xφ = −∂φV (φ), the equation of motion of a particle in potential V . Also note that
this implies “conservation of energy”, i.e., (∂xφ(x))2 + V (φ(x)) is constant.) Rearranging, we get that
dx = dφ/

√
−V (φ), so where φ(x) is monotone, the inverse is

x(φ) = x(φ∗)±
∫ φ

φ∗

dψ√
−V (ψ)

.

For each i then define the elliptic function

Fi(φ) =

∫ φ

φ∗i

dψ√
−Vi(ψ)

, (64)

where take the positive branch of the square root, and φ∗i will be chosen later. Then we have that x(φ) −
x(φ0) = ±(F (φ)− F (φ0)), or for an appropriate x0,

φ(x) = F−1 (F (φ(x0))± (x− x0)) .

We clearly want limx→∞ ∂xφ(±x) = 0, and limx→∞ φ(±x) to be zero or one depending on the sign of
s0 and sn+1. Since (∂xφ(x))2 = −V (x), this implies that if s0 < 0, then K0 = 0, while if s0 > 0 then
K0 = s0/6; and likewise for Kn+1.

We also require that φ(x) and φ′(x) are continuous. Continuity of φ′(x) is equivalent to Vi(xi+1) =
Vi+1(xi+1), which we can rearrange to find an equation for Ki+1 in terms of Ki and φ(xi+1):

Ki+1 −Ki = (si − si+1)φ(xi+1)2(1− 2φ(xi+1)/3).
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What about the frequency at the points the selection changes, φ(xi)? Well, if φ(x) is monotone on [xi, xi+1)
then we can without loss of generality take φ∗i = 0 or 1 depending on the sign of si. Otherwise, let φ∗i be
the (unique) root of Vi in [xi, xi+1), so Vi(φ

∗
i ) = 0. In this case, φ∗i is the maximum or minimum of φ in the

interval: if s > 0, then φi = max{φ(x) : x ∈ [xi, xi+1)}. Recall we defined Fi using φ∗i ; now using the fact that
φ is monotone with the opposite sign on either side of φ∗i , xi+1−xi = Fi(φ(xi+1))−Fi(φ∗i )+Fi(φ(xi))−Fi(φ∗i ),
and that F (φ∗i ) = 0, we know that the length of the ith stretch is

xi+1 − xi = ± (Fi(φ(xi)) + Fi(φ(xi+1))) .

Note that all the ±’s are easily relatable to the signs of si. If we knew φ(x1) and φ′(x1), then we’d be able to
solve the equations for φ(xi) and Ki recursively upwards. In some cases, such as [9], we can infer φ(0) and
∂xφ(0) by spatial symmetry. In other cases, we are only given φ(−∞) and φ(∞), and have to work inwards
from the ends.

Doing the integrals

An important ingredient in the above method is the integral (64), to which a method for solving the Korteweg-
de Vries equation can be applied [37]. Recall that Vi(φ) = siφ

2(1− 2φ/3) + Ki, with Ki = Vi(0) chosen to
match V at the boundaries; since we’re just working within an interval with s constant, we can rescale space
by
√

2si/σ, so that s and σ drop from the equation. We then want to integrate

∫
dφ√
−V (φ)

=

∫
dφ√

φ2(1− 2φ/3) +K
,

over a domain where V is always negative. Let φ2(1 − 2φ/3) + K = (α − φ)(φ − β)(φ − γ), and change
variables first to y2 = (α− φ), and then to x = y/

√
α− β, so that

dφ√
φ2(1− 2φ/3) +K

=
−2dy√

(α− β − y2)(α− γ − y2)

=
−2dx

√
α− γ

√
(1− x2)(1− S2x2)

,

with S2 = (α− β)/(α− γ). Now Jacobi’s incomplete elliptic integral of the first kind is defined by

F (x; k) =

∫ x

0

dt√
(1− t2)(1− k2t2)

,

and the Jacobian elliptic function sn(x; k) is the inverse: F (sn(x; k); k) = x. As k → 0, sn(x; k) → sin(x),
while as k → 1, sn(x; k)→ sinh(x).

More information about the simulations

In tables S1 and S2 we provide additional details regarding the simulations we used to validate the theory
in figures 4 and 5.
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