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Abstract
Many visual depictions of probability distributions, such as error bars, are difficult for users to
accurately interpret. We present and study an alternative representation, Hypothetical Outcome
Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical
background required to interpret many static representations of distributions, HOPs require
relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer
properties of the distribution using mental processes like counting and integration. We
conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people
made much more accurate judgments about plots of two and three quantities. Accuracy was
similar with all three representations for most questions about distributions of a single quantity.

Author Summary
It is important for users of visualizations, tables, and other data presentations to assess the
uncertainty of inferred properties. Showing a probability distribution over possible outcomes is a
common way to represent uncertainty. Many visual depictions of probability distributions, such
as error bars, are difficult for users to accurately interpret. We present and study an alternative
representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of samples
representing hypothetical outcomes. People can interpret and make estimates about uncertainty
from HOPs without special training. In contrast to most static representations, HOPs enables
viewers to infer properties of the distribution using mental processes like counting. We
conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people
made much more accurate judgments about plots of two and three quantities. Accuracy was
similar with all three representations for most questions about distributions of a single quantity.

1 Introduction 1

Various visual representations, such as error bars, are intended to help the viewer reason about 2

the distribution of values that a random variable could take. For example, examine Figure 1 and 3

try to answer the question posed below the figure (Answer is below1). If you find it difficult to 4

answer the question using the plot, you are not alone. Our research finds that over half of the 5

1 Pr(B>A)≈.75(i.e.,75%)
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viewers will underestimate the true probability by 0.5 (the majority guessing somewhere around 6

0.2 or 0.25 as their answer). 7
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Figure 1. Fictitious scenario. Scientists have
measured the concentration of two chemical
solutes (A and B, each measured in parts per
million) in many vials of sea water. Horizontal
blue lines are the means, dashed vertical bars
capture 95% of the measurements for each
solute, and you may assume independence.
Question: in what percentage of vials is there
more of solute B than A (Probability(B > A)?
Answer below.

The visualization you viewed in Figure 1 8

presents information about a probability 9

distribution for each variable shown. 10

In doing so, the plot aligns with guidelines 11

for reporting quantitative data that suggest 12

presenting such distributional information 13

whenever observed values may not 14

reliably reflect the underlying population [1]. 15

For example, a weather forecasting 16

model may offer a probability distribution 17

over weather outcomes at a particular 18

time. As another example, consider outcome 19

data from 32 subjects in a lab experiment. 20

From the data, a sampling distribution 21

of the mean is derived. It provides a 22

model of the probability density of the mean 23

outcome for other hypothetical experiments 24

with 32 subjects, assuming the true mean and 25

standard deviation are those estimated using 26

the data from the real subjects. The task of 27

uncertainty depiction is to visually represent 28

the distributional information so that 29

a user can integrate it into their interpretation. 30

An error bar =like that in Figure 31

1 or Figure 2 left provides a static, abstract 32

representation of a univariate distribution. 33

The error bar shows a range around the 34

central tendency (e.g., mean or median). The 35

length of the bar may represent 1 standard deviation, or enough to cover 95% of the random 36

draws from the distribution. When the error bar is based on a sampling distribution of the mean 37

of some underlying distribution, it is called a confidence interval. Unfortunately, despite their 38

widespread usage, the interpretation of errors bars, is notoriously difficult, as evidenced by the 39

high error rate among the viewers we observed of Figure 1. Though our participants are “lay 40

readers” who may not have advanced knowledge of statistics, the high levels of error we observe 41

are unlikely to stem from a lack of expertise. Research shows that even experts fail at making 42

correct statistical inferences from error bars [2]. 43

As alternatives, analysts sometimes use other static, abstract representations of distributions 44

ranging from the well-known box plots to rarer forms such as violin plots (Figure 2, center), 45

gradient plots, and other variants [3]. These forms are often more expressive of the distribution 46

and can avoid biases associated with reading error bars [4]. However, such forms require 47

additional knowledge of the visual encoding to decode the distributional information. They can 48

also require more statistical background knowledge to interpret. 49

In part, static forms are a necessity of static publication media–i.e., paper. Increasingly, 50

information is presented with electronic formats (e.g., Web pages, PDFs, etc.) augmenting, or 51

even replacing, paper. These new digital forms will increasingly allow us to better convey 52

complex information through features such as interaction and animation. Depictions of 53

distributions, for example, can be dynamic and interactive. Ideally, the new dynamic 54

representations can be coupled with static representations to provide a solution that can work for 55

both electronic and paper transmission of data. 56

In this paper, we present and study an alternative approach for depicting distributions, which 57
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Figure 2. An illustration of our different study conditions. Error bars convey the mean of a
distribution of measurements (outcomes) along with a vertical “error bar” capturing a 95%
coverage interval. Violin plots extend this idea by showing the distribution in a mirrored
histogram. Hypothetical Outcome Plots (HOPs) present the same distribution as animated
frames (that can be played in sequence or manually flipped through). Each frame contains a
horizontal bar representing one outcome. Click to play the HOPs animation (in Adobe Acrobat).

we call Hypothetical Outcome Plots (HOPs). In its most simple variant, the HOPs approach is to: 58

(1) Draw a sample of hypothetical outcomes (draws) from the distribution; (2) for each, make a 59

plot that becomes one frame in an animated presentation. For example, Figure 2 (right) depicts 60

several frames for a HOPs visualization for a single random variable. Each frame contains a 61

horizontal bar that depicts a specific outcome, one draw for that random variable. An interactive 62

controller allows the viewer to start/pause and step through frames. 63

There are two clear drawbacks to dynamic presentation of individual draws. First, it 64

introduces sampling error. The reader of the visualization will examine only a finite number of 65

frames, and thus will get an imprecise picture of the complete distribution. We explore this in 66

more detail in Section 6.2. Second, the reader will have to integrate information from multiple 67

frames, either using the visual system or some more mechanical process such as counting. 68

Maintaining visual stability across frames (e.g., by keeping the range of the y-axis fixed) reduces 69

the difficulty of visual integration but does not eliminate it. 70

On the other hand, there are several advantages to HOPs: 71

1. HOPs enable viewers to think in finite terms (i.e., counts) about individual outcomes 72

rather than infinite terms (i.e., probabilities) abstracted over entire distributions, which 73

numerous studies have shown are more difficult for humans to conceive of [5, 6]; 74

2. HOPs do not require an analyst to add new marks (e.g., an error bar) or new encodings 75

(e.g., width, transparency) and do not require viewers to understand those marks and 76

encodings. 77

We present a study in which subjects make inferences about the probability distributions of 78

one, two, and three random variables at a time using HOPs, error bars, and violin plots. Most 79

critically, our results indicate that HOPs support more accurate inferences about bivariate and 80

trivariate distributions (e.g., the probability that quantity B is larger than A or larger than both A 81

and C). As we might expect error bars and violin plots perform well for simple inferences about 82

univariate distributions. However, and perhaps surprisingly, HOPs achieve comparable 83

performance for many such tasks. 84
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2 Related Work 85

We review prior work that conveys uncertainty by showing information from probability 86

distributions of one or more random variables, which are either the underlying probability 87

distributions or sampling distributions. 88

2.1 Static Depiction of Probability Distributions 89

Many approaches generate a static representation of a probability distribution. A common 90

approach is to add an uncertainty depiction as an extrinsic annotation to a plot. For example, 91

error bars representing confidence intervals can be superimposed on bar charts [7]. Properties of 92

the distribution may also be represented in summary plots using a series of marks (e.g., a 93

boxplot or modified box plot as in [4, 8, 9]). Extrinsic representation can result in interpretation 94

errors, however, because the statistical construct represented by an interval (such as one standard 95

error, or a 95% confidence interval) is not properly understood [2, 9]. Individuals may apply 96

heuristics for reading the error bar that are not correct, such as assuming that overlapping error 97

bars always indicate a non-significant difference [10], or that error bars display a region of 98

uniform probability [9]. 99

Users are also likely to underweight the uncertainty information relative to the underlying 100

data due to the separation of the uncertainty as separate marks. Heuristics based on the “hard” 101

data impact viewers’ abilities to accurately integrate information from error bars: viewers who 102

use bar charts with error bars superimposed are influenced by a within-bar bias, perceiving 103

outcomes below the top of the bar as more likely than those above [4, 11]. 104

Other abstract, static representations encode a distribution’s probability density function as 105

either marks or “retinal variables” (e.g., color, shape, texture) [12]. For example, violin plots, 106

which we include in our study, encode the probability density as mark width [13–15]. This 107

enables visual inference about the cumulative density function based on the sizes of shaded 108

regions. The gradient plot (Fig. 9) instead encodes density using mark opacity. Several studies 109

that include variants of both find no evidence of a performance difference between the two [4, 9]. 110

We test only the violin plot, as this visualization encodes the probabilities using area, which is 111

considered to be easier to decode than the opacity as is used in the gradient plot [16]. 112

2.2 Depiction of Multiple Individual Outcomes (Draws) 113

Several previous uncertainty visualizations present multiple individual draws, or possible 114

outcomes from an observed probability distribution rather than abstract representations of 115

distributions. For example, several early presentations used bootstrapping to generate and 116

visualize draws based on observed data for rainfall levels [17, 18]. In more recent geospatial 117

applications, multiple visualizations of spatial models are stochastically generated and presented 118

using random and serial animation and interactive mechanisms such as toggling by the 119

viewer [19–23]. Researchers have proposed that animation is particularly helpful for helping 120

viewers recognize spatial autocorrelation [21]. Evans [22] conducted a comparison between land 121

cover maps that used color saturation to display value certainty levels, maps that displayed only 122

highly certain data, and a “flickering” map that alternated between showing all data and only 123

highly certain data. The flickering maps were found to be helpful overall, though “annoying” to 124

some users. Recently, the New York Times has used simulation-generated samples to illustrate 125

uncertainty in employment projections and potential outcomes of political elections to general 126

audiences [24, 25]. 127

While not animated, hypothesis test “line-ups” and similar approaches to graphical statistical 128

inference also rely on visual comparisons between multiple hypothetical outcomes ( [26]; see 129

also [27–30]). In the classic line-up technique, users compare a series of plots. One is based on 130

the real data. The others are drawn from a null hypothesis distribution. If the user can pick out 131

the real data from the “line-up” of plots, then the plausibility of the null hypothesis is 132
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diminished. For example, suppose the dataset is a table with two columns, A and B, each cell 133

containing a numeric value. The plot of the real data would be a scatterplot. Suppose the null 134

hypothesis is that there is no correlation between A and B. Each hypothetical outcome can be 135

generated through permutation bootstrapping. That is, randomly shuffle the values in column B, 136

and make a new scatterplot. 137

HOPs can be applied more generally to any distribution, including any sampling distribution, 138

not just the null hypothesis distribution. This enables applying HOPs to facilitate statistical 139

inferences beyond Null Hypothesis Significance Testing (NHST). For example, compute the 140

correlation between A and B in the real data and use it to create a model of the joint distribution 141

of A and B. Then, draw samples of the same size from the modeled joint distribution and make 142

scatterplots of them. This would provide the user with a sense of the range of correlations that 143

would be likely to be observed in samples of that size, assuming that the true correlation is the 144

correlation observed in the sample. 145

Within statistics education, simulation has been used to convey fundamental concepts like 146

sampling distributions and confidence intervals [31]. The motivation is that simulating individual 147

outcomes provides a more concrete way to think about the abstract notion of distributions. Our 148

exploration of HOPs shares the same motivation. However, rather than being a stepping stone 149

for teaching people how to interpret abstract static representations, we suggest that in many 150

situations animated HOPs may be a good substitute for those abstract static representations. 151

In attempting to reform statistics away from NHST, Cumming suggests the value of the 152

cognitive evidence that is provided by the “dance of the means” and other sample-based 153

simulations for supporting more intuitive understanding of variance, sampling, and related 154

concepts [32]. Dance of the means is animated HOPs with hypothetical outcomes drawn from 155

the sampling distribution of the mean. 156

No previous work that we are aware of has directly tested the efficacy of dynamic depiction 157

of individual outcomes as alternatives to standard representations, what we are calling animated 158

HOPs. Our primary contribution is to provide empirical evidence that untrained users can 159

interpret and benefit from animated HOPs. 160

3 Study: Methods 161

We conducted a user study on Amazon Mechanical Turk to assess people’s ability to interpret 162

HOPs, error bars and violin plots. Each subject was assigned to one of the three representation 163

conditions and was presented with a sequence of nine tasks. 164

We asked subjects to report numerical properties of the distribution of possible outcomes that 165

HOPs, error bars and violin plots all convey. For example, for a plot representing a single 166

random variable with a continuous outcome, we asked people to report the mean of the 167

distribution, the probability of an outcome above some threshold k1, and the probability of an 168

outcome between two other thresholds, k2 and k3. The outcome of interest is the absolute error, 169

the absolute value of the difference between the subject’s report and the correct answer. We 170

conclude that one technique is better than another if subjects tend to have smaller absolute errors 171

in the answers they give. 172

Some attempts to measure the effectiveness of uncertainty representations have asked people 173

to view a representation, report some property, and then express how confident they are about 174

the report. We find this approach problematic because there is no correct amount of confidence 175

to report. In such experiments, there is no way to assess the correctness of responses about 176

individual plots. It is only possible to infer that people are reading multiple plots inconsistently: 177

for example, if subjects express more confidence about an outcome in plot 1 than plot 2, but the 178

outcome distribution in plot 1 is actually more dispersed than the one in plot 2, then there must 179

be something wrong with the representation of uncertainty in the two plots. For this reason, we 180

chose to use the approach in the canonical work of Ibrekk and Morgan [9], who presented 181
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various representations of uncertainty for weather forecasts and asked subjects to report 182

probabilities (e.g., snowfall > 2 inches, or between 2 and 12 inches). 183

3.1 Apparatus 184

Values are drawn from normal (Gaussian) distributions. In the simplest plots, there is just one 185

variable, A. We also present plots of two variables, A and B, and of three variables, A, B, and C. 186

The most common use of error bars is to present confidence intervals depicting information 187

about a sampling distribution. For example, suppose we have a set of 32 vials of seawater and 188

have measurements of the number of parts-per-million of a chemical solute in each vial. We 189

imagine drawing many other sets of 32 vials from the same underlying distribution. The 190

distribution of the means of those samples is the sampling distribution. 191

By contrast, for our tasks we framed the inferences to be made as reading off properties of an 192

underlying distribution rather than a sampling distribution. This kept the task descriptions 193

simple. It also reduced opportunities for misconceptions about statistical inference from 194

affecting people’s answers to the questions. The instructions explain: 195

Scientists have measured the concentration of some chemical solutes (measured in 196

parts-per-million) in many samples of sea water. We will show you plots based on 197

their measurements and ask you questions about them. 198

Thus, the error bars that we present are not confidence intervals. They do not show a 199

property of the sampling distribution of means of many vials. Instead, they show a range of 200

values that cover 95% of the underlying distribution. 201

The text explaining the error bars reads: 202

The blue line shows the average amount of solute in all the seawater vials. The 203

dashed lines show an error bar, a range above and below the average. 95% of the 204

collected vials fall in the range defined by the dashed lines. 205

Similarly, the violin plots also show the probability density function for the underlying 206

distribution, not a sampling distribution. The text explaining the violin plots reads: 207

The width of the colored area at each level shows how many vials of sea water were 208

found to have that particular amount of the chemical solute. 209

The text explaining the animated HOPs explains that each frame shows one draw and also 210

provides instructions for manually controlling the animation. It reads: 211

Each plot shows the quantity of solute in one vial of seawater. Use the buttons at the 212

top of the plot to pause, play, or step forward and back through the plots if you want 213

to see them at your own pace. 214

To encourage subjects to read these descriptions, for the first trial each subject must click a 215

button at the top of the plot to reveal the questions (and start the animation for HOPs). After the 216

subject submits answers to the questions for the first distribution, the second plot is shown. The 217

questions display immediately and in the HOPs condition the animation starts immediately. 218

In the HOPs condition, the animation advances every 400ms. Subjects could pause the 219

animation and move forward and back one frame at a time. We note that 400ms provides enough 220

time for eye motion and silent-counting [33]. The animation looped after the 5000 frames had 221

completed, which was clearly conveyed to the user by restarting the frame numbering at 0. 222

All visualization stimuli were created using D3 [34]. The visualization software and study 223

interface are available in Supplemental Material. 224
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Figure 3. Violin plots showing the four one-variable distribution types, the four two-variable
distributions, and the single three-variable distribution summarized in Tables 1 - 3. Click the
image to play the HOPs animation.

Table 1. One-Variable Distribution Types
Distr. σ D = |µ− k1| Pr(X > µ +D)

1 3 5 5%
2 3 20 0%
3 17 5 39%
4 17 20 12%

Table 2. Two-Variable Distribution Types
Distr. µa σa µb σb corr(A,B) Pr(B > A)

5 40 15 45 15 0 59%
6 50 10 60 10 0 76%
7 80 2 85 2 0 96%
8 55 15 60 15 0.95 85%

Table 3. Three-Variable Distribution Types
Type µa σa µb σb µc σc Pr(B > A and B >C)

9 40 10 55 10 40 20 66%

3.2 One-Variable Tasks and Distributions 225

Each subject completes four trials, each with one univariate distribution. For each trial, the 226

subject reports three properties of the distribution, the mean and two properties of the 227

Cumulative Distribution Function (CDF). Because previous research has shown that people are 228

better able to reason about probabilities when they are expressed as frequencies [5, 6], we ask 229

subjects to report frequencies as x times out 100. 230

1. What is the average measurement of solute in parts-per-million (ppm)? 231

2. How often are the measurements above the value of the red dot? 232

3. How often will the measurements lie between k2 and k3 ppm? 233

Each trial is defined by the parameters: mean (µ), standard-deviation (σ ), distance of the red 234

dot from the mean (k1) and whether the red dot was above or below the mean. We always set k2 235

to be the closest multiple of 10 below below µ and k3 to be closest multiple of 10 that is at least 236

20 above µ . We deliberately varied these parameters between trials and subjects to reduce the 237

possibility of results that are limited to particular parameter sets. 238

In particular, σ was either low (3) or high (17), and the distance between µ and the red dot 239

either small (±5) or large (±20). We randomize whether the red dot is k1 units above or below 240

µ . Table 1 summarizes the four distribution types. The last column shows the probability that 241

the value will be higher than the red dot when the red dot is above µ . When the red dot is below 242

µ , the correct probability is the inverse of that shown (e.g., 88% instead of 12% for distribution 243

type 4). 244

To ensure that there is nothing special about the particular µ values, and to ensure that 245

subjects don’t think of additional tasks as related to previous ones, for each distribution type we 246

construct four distributions with different values of µ : 131, 344, 523, and 672. We always set k2 247

to be the closest multiple of 10 below below µ and k3 to be closest multiple of 10 that is at least 248

20 above µ 249
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Each subject completes one trial for each of the four distribution types in Table 1. To 250

counter-balance for any possible order effects, we construct all 24 possible orderings of the four 251

distribution types. Each of those is crossed with four orderings of the µ values, generated from a 252

4×4 Latin Square to assure that each µ value appears equally often as the first, second, third, or 253

fourth trial. That yields 24×4 = 96 possible sequences of four trials. For each sequence, we 254

randomly (Pr = 0.5) determine whether the red dot is above or below µ for each of the four 255

distributions. The 96 possible sequences are fixed. For each of the visualization conditions 256

(HOPs, violin plots, and error bars), one subject is assigned to each sequence of four trials. 257

For each distribution in each sequence, we simulate 5000 draws from a normal distribution. 258

This same set of 5000 draws is used to generate all three visualizations for that distribution. 259

Some drawn values are below 0. Since negative values do not make sense as amounts of a 260

chemical solute, all such values are rounded up to 0 regardless of visualization condition (we 261

repeat this step for two and three variable distributions below). All violin plots are generated in 262

D3 [35] using the histogram function with fine-grained bins. Figure 3 shows violin plots for all 263

the distributions. 264

3.3 Two-Variable Task and Distributions 265

After completing all four one-variable trials, each subject completes four trials involving 266

bivariate distributions. For each trial, each subject reports a single property of the joint 267

distribution: how often is the value of the random variable B larger than that of A. The exact 268

wording was: 269

How often is the measurement of solute B larger than the measurement of solute A? 270

Answer in terms of the number of times out of 100. 271

A common inference that people are expected to make from a pair of error bars is the 272

statistical significance of a difference in population means. In that case, the error bars display 273

confidence intervals around sample means, an interval that covers 95% of sampling distribution 274

of the mean. For example, how plausible is the null hypothesis that the average heights of 275

women and men are the same given the mean heights and variability found in samples of n 276

women and n men? This involves some visual inference: assessing whether Pr(B > A) is above 277

some threshold, where A and B are sampling distributions of the means. It also involves some 278

statistical inference: if, Pr(B > A) is above some threshold, then the difference in means is 279

statistically significant. 280

Our experiment does not ask subjects to judge the statistical significance of a difference in 281

means, for two reasons. First, judgments of significance require both visual and statistical 282

inference. Prior work has shown that people often get confused by the statistical inference 283

associated with sampling distributions [2]. We therefore chose to isolate the visual inference 284

task: the ability to decode the visualization to make probability estimates. Thus, we do not 285

present sampling distributions at all and our error bars convey coverage rather than confidence 286

intervals. We ask subjects to estimate the percentage of vials where B is larger than A. We do 287

not refer to samples of many vials. 288

Second, we wanted to get a finer-grained measure of people’s ability to assess the reliability 289

of A>B. Thus, rather than asking a binary question of reliability (is Pr(B > A) above some 290

threshold such as 95%), we asked directly for Pr(B > A). If there is special interest in knowing 291

whether people make qualitative errors, such as thinking Pr(B > A)> .95 when it is not we can 292

set various qualitative thresholds such as .95 during the analysis phase and count the frequency 293

of errors rather than their average magnitude. 294

We deliberately vary the means and standard deviations between A and B to generate tasks 295

where Pr(B > A) varied. The parameters for each of three data sets are shown in Table 2, along 296

with the correct value of Pr(B > A) that subjects were supposed to report. In distributions 5-7 in 297

Table 2A and B are independent. Distribution 8 is identical to distribution 5 except that the 298
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means are shifted up and the correlation between A and B is very high. The correlation causes 299

Pr(B > A) to be high despite the relatively small difference in means. 300

To counter-balance for any possible order effects, we construct all 24 possible orderings of 301

the four distributions. In each of three conditions (HOPs, error bars and violin plots) we assign 302

four subjects to each of the possible orderings. For each task, we simulate 5000 draws from the 303

joint distribution defined by the appropriate row in Table 2. This same set of 5000 draws is used 304

to generate all three visualizations for that data set. 305

3.4 Three-Variable Task and Distribution 306

After completing four two-variable trials, each subject answers one question about a trivariate 307

distribution. Subjects are asked to judge how often value B is the largest of the three. The exact 308

wording was: 309

How often is the measurement of solute B larger than both the measurement of 310

solute A and the measurement of solute C? Answer in terms of the number of times 311

out of 100. 312

The three random variables are independent, defined by the parameters in Table 3. We again 313

simulate 5000 draws. The same set of 5000 draws is used to generate all three visualizations for 314

that task. Note that for value C in the trivariate violin plots in Figure 3, there is a bulge at zero 315

reflecting the negative numbers rounded up to 0 in that distribution. 316

3.5 Subjects 317

The number of subjects is based on a prospective power analysis. The experiment was powered 318

based on the bivariate distribution questions, where subjects have to estimate the probability that 319

B > A. We use pilot data from a previous experiment using slightly different versions of error 320

bars and HOPs and a different framing of the task. From the previous experiment, we get 321

standard deviations in the mean absolute error of subjects’ estimates of 11 for HOPs and 18 for 322

error bars. 323

We power the study to detect a true difference in mean absolute error of ten percentage 324

points between two visualization conditions. Through simulations, we find that with 90 subjects 325

per treatment, the null hypothesis will be rejected 82% of the time when the true difference in 326

error rates is 10%. Some of the counter-balancing of potential order effects was easier with a 327

multiple of 24 subjects, so we actually run 96 subjects per condition, for a total of 288. 328

Subjects were recruited on Amazon Mechanical Turk (AMT). AMT has been shown to be an 329

effective platform for conducting graphical perception studies [36], and has been used in the 330

information visualization community for testing how non-statisticians interpret visualizations of 331

uncertainty [4]. The population of workers is largely gender balanced, and consists primarily of 332

individuals in their 30’s and 40’s with median household incomes similar to that of the U.S. 333

median [37]. We used a standard selection criteria that restricted the task to U.S. workers with 334

an approval rating of 95% or above. Subjects received a base reward of $0.90 and a bonus of 335

$0.15 times the total number of distributions, or trials (out of nine total) for which they correctly 336

answered the question (one of their three responses for each univariate distribution trial was 337

randomly drawn and scored for the bonus). Hence, the maximum payment a subject could 338

receive was $0.90 + $1.35. The HIT duration was limited to 30 minutes. No other time 339

restrictions were applied. As a quality control measure in analysis, on each of the univariate 340

distribution trials subjects were asked the value corresponding to the red dot. The range of the 341

y-axis was always 160. Subjects who were off by more than 30 on the value corresponding to 342

the red dot for any of the four trials were deemed deficient in either effort or ability to make 343

inferences from an x-y plot. One subject in the HOPs condition, 4 in the violin plot condition, 344

and 7 in the error bars condition were deficient in this way. Their data was discarded and each 345
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was replaced by a new subject completing the same task sequence. We recorded the total number 346

of subjects who started the experiment but did not complete all the tasks. The dropout rate was 347

13.1% for HOPs, 14.4% for error bars, and for 9.4% for violin plots. Subjects who dropped out 348

were also replaced with new subjects. All of the analysis is reported based on the final 288 349

subjects who completed all nine trials and passed the quality control check. 350

3.5.1 Ethics 351

The study was approved by the University of Michigan Health Sciences and Behavioral Sciences 352

Institutional Review Board (Study Number HUM00065618). Subjects were presented with 353

study information and terms of consent on the introductory task screen and expressed their 354

consent by clicking ‘Continue’ to start the task. 355

4 Hypotheses 356

We expect that subjects will be able to estimate the mean of the distribution very easily in the 357

error bar condition as the mean is shown explicitly and the description below the plot states 358

which line represents the mean. We also expect that subjects will be able to estimate the mean of 359

the distribution easily with a violin plot: since our distributions are normal and contain enough 360

samples, the mean is also the median and the point of highest density (the widest part of the 361

violin plot). For these plots, any errors should come only from misunderstanding the nature of 362

the plots or from imprecision in visually tracking from a point on the graph to a point on the 363

y-axis and interpolating an exact value between labeled tick-marks on the y-axis. 364

Estimating the mean from animated HOPs is not quite so easy. The subject has to view 365

multiple frames and integrate information across them to estimate an average vertical position. 366

There is an additional source of imprecision introduced by looking at only a finite set of frames: 367

even if the subject perfectly interprets n frames, the standard error when estimating the mean 368

will be σ/
√

n. When σ is small, then, subjects should estimate the mean quite well, even when 369

viewing only a few frames. Indeed, with just one frame, the precision will be σ . When σ is 370

large, however, it is harder to integrate the information across frames (the lines jumps around a 371

lot between frames) and more frames are needed to get a precise estimate. Thus, we have: 372

Hypothesis 1. When estimating the mean of a single variable, subjects will have lower error 373

rates using error bars and violin plots than HOPs where σ is high (distributions 3 and 4), but 374

not on distributions where σ is low (distributions 1 and 2). 375

In principle, violin plots are an excellent representation for allowing inferences about the 376

cumulative density above certain thresholds or between two thresholds. A subject just needs to 377

estimate what portion of the total shaded area falls in the desired range. Error bars are less suited 378

to this task. A subject who is very familiar with the normal distribution may be able to mentally 379

visualize the cumulative density function from the mean and the 95% interval, or may know 380

some analytic properties of the distribution (e.g., about 32% of values are more than σ away 381

from the mean), and then make further inferences to yield an estimate. There is not, however, a 382

simple visual procedure that will yield accurate estimates. With animated HOPs, subjects have 383

to integrate visually over many frames or count occurrences above the threshold. In addition, 384

there will be imprecision from examining a finite number of frames. Thus we have: 385

Hypothesis 2. When estimating the probability of a random variable above a threshold or 386

between two thresholds, subjects will have lower error rates using violin plots than error bars or 387

HOPs. 388

It is more difficult to assess the reliability of a comparison between the joint distribution of 389

two random variables using error bars or violin plots. For distributions 5-7, where the two 390

random variables are independent and normally distributed, both error bars and violin plots in 391
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Table 4. Mean Absolute Error by Treatment and Task Parameters. The ∗ indicates a significant
difference between the starred treatment and at least one other (pad j < 0.001). Figure 3
illustrates the violin plot for each Type.

1-var Mean Absolute Error
Row Type σ |µ− k1| Question Correct Answer HOPs Violin Err. Bar

1 1,2 low 3.7 3.8 7.8
2 3,4 high N/A µA 9.6* 4.2 2.1
3 1 low low .05 0.14 0.35* 0.21
4 2 low high 0 0.06 0.06 0.09
5 3 high low .39 0.13 0.10 0.11
6 4 high high

Pr(A > k1)

.12 0.14 0.11 0.14
7 1,2 low 0.20 0.19 0.29*
8 3,4 high N/A Pr(k2 ≤ A≤ k3) 0.17* 0.14 0.13

2-var µa−µb σa = σb
9 5 5 15 .59 0.11* 0.37 0.38

10 6 10 10 .76 0.13* 0.35 0.42
11 7 5 2 .96 0.09* 0.45 0.54
12 8 5 15

Pr(B > A)

.85 0.10* 0.63 0.60
3-var

13 9 Pr(B > A and B >C) .66 0.14* 0.37 0.36

principle provide complete information about the joint distribution. However, there is no simple 392

visual operation that yields the correct answer. In addition, for distribution 8, neither error bars 393

nor violin plots convey information about the correlation between A and B while HOPs do. 394

HOPs, on the other hand, are still straightforward to interpret. Indeed, it may be easier visually 395

to assess whether B > A in one frame than to assess whether a draw from a univariate 396

distribution falls in some range. 397

Thus, we have: 398

Hypothesis 3. When estimating Pr(B > A) in a bivariate distribution plot, subjects will have 399

lower error rates using HOPs than violin plots or error bars. 400

For the task of estimating how often B will be the largest of three random variables, error 401

bars and violin plots again provide complete information about the joint distribution, but in a 402

format that does not afford easy visual inference. By contrast, we expect that subjects using 403

HOPs will do almost as well on the three-variable trial as the two-variable trials. Thus, we have: 404

Hypothesis 4. When estimating Pr(B > A and B >C) in a trivariate distribution plot, subjects 405

will have lower error rates using HOPs than violin plots or error bars. 406

5 Study Results 407

5.1 Preliminary Steps 408

Analyzing the total time to completion of the 288 subjects showed that HOPs viewers spent an 409

average of 523s (median: 544s) to complete the entire study, slightly longer than error bar and 410

violin plot viewers (means: 479s, 481s, medians: 451s, 451s, respectively) but the difference 411

was not statistically significant (F(2,285) = 2.02, p > 0.1). 412

Many HOPs subjects (35%) used the interactive features ( pause and stepping forward or 413

backward through frames) on the first question screen. However, on average, just 10% of 414

subjects used these features on each of the subsequent screens, varying only slightly between the 415

one-, two-, and three-variable tasks (9.7%, 9.8%, and 13.5% respectively). The median number 416

of frames displayed, over all screens (data sets), was 89 (mean: 101, SD: 79). We observed no 417

significant effects on error rates in subjects’ responses from the number of frames, number of 418

interactions, or time spent on page prior to answering each question. 419

PLOS 11/24



   HOPs          EB           Violin        HOPs        EB    Violin

    

    

    3.7             7.8            3.8          9.6*       2.1     4.2

  0

 15

1 2 3 4

σ low σ high
Estimate μ - Absolute Error

 10

   5

Figure 4. Stimuli (top) and absolute error (bottom) of estimates of µ . Error bars in the results
plot show a 95% confidence interval. Click the image to play the HOPs animation. Each HOPs
frame is a draw from the sampling distribution.

Results for the one-, two-, and three-variable trials reported below include all 288 subjects. 420

We ran all models reported below with and without an indicator variable for the order in which 421

the subject completed the trial and a variable that captured the time the subject spent on the page. 422

We saw no main effect of either variable in any analysis, and improvements in R2 of 1% or less 423

from including order and time on page. All models below therefore omit order and time on page. 424

5.2 One Variable Results 425

5.2.1 Estimating µ 426

For the question that asked subjects to estimate the mean, we hypothesized that high variance 427

data would make the inference more difficult for HOPs viewers, while low variance data would 428

yield no differences in the accuracy of mean estimates between treatments (H1). Our results 429

support H1: we observe a significant difference between mean absolute error between treatments 430

for the high variance dataset (F(2,573) = 32, p < 0.001, Table 4 row 2) and no difference in 431

MAE between treatments for the low variance data (F(2,573) = 0.9, p = 0.4, row 1). 432

Specifically, for the high variance data set we find that the HOPs viewers show significantly 433

higher levels of error compared to both error bars and violin plots (both pad j < 0.001). While no 434

significant difference exists for the low variance data set, the mean absolute error for the error 435

bars is noticeably higher than that of the other two conditions. Deeper examination of the data 436

revealed an outlier with very high error for estimating µ for one low variance dataset. If we 437

remove the outlier, we see a slightly lower mean absolute error for error bar users (1.9) which is 438

significantly lower than both other conditions (F(2,571) = 10.7, p < 0.001, both pad j < 0.001). 439

5.2.2 Estimating Pr(A > k) and Pr(k2≤ A≤ k3) 440

We hypothesized that subjects would be more accurate in estimating the probability that A is 441

greater than k1 or between the values k2 and k3 with violin plots given that these plots directly 442

depict information from the pdf as area (H2). Our results provide little support for H2. On one 443
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      HOPs   EB  Violin   

σ high, |μ-k| high

1

2

3

4

σ high, |μ-k| low

σ low, |μ-k| high

σ low, |μ-k| low           0.14  0.21  0.35

         0.06  0.09  0.06      

      0.13   0.11   0.10     

      0.14   0.14  0.11      

     Pr(A>=k)   Absolute Error       

Figure 5. Stimuli (left) and absolute error (right) of estimates of Pr(A≥ k). Both locations of
the red dot (above and below mu) are shown, though subjects saw only one of the dots in each
trial. Error bars in the results plot indicate a 95% confidence interval. Click the image to play the
HOPs animation. Each HOPs frame is a draw from the sampling distribution.

task of estimating Pr(A > k) was MAE lower for violin plots than either of the other two. In row 444

3, where σ is low and |µ− k1| is low, we see significantly higher MAE among viewers of the 445

violin plots. 446

In row 7, error bars performed significantly worse than violin plots and HOPs 447

(F(2,573) = 15, p < 0.001, both pad j < 0.001). In row 8, HOPs performed significantly worse 448

than violin plots and error bars (F(2,573) = 15, p < 0.01, pad j < 0.05 and pad j < 0.01 449

respectively). 450

5.3 Two Variable Results 451

We hypothesized that subjects who used HOPs for two-variable plots would make more accurate 452

inferences about how often B > A (H3). Our results provide strong support for H3. For all three 453

two variable plots, subjects who used HOPs had much lower MAE than those used violin plots 454

and error bars (F(2,573) = 73,57,84,220, all <= 0.001, all pad j < 0.001, rows 9 through 11 455

respectively). 456
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   HOPs          EB           Violin         HOPs        EB   Violin

    

    

   0.20              0.29*           0.19          0.17*       0.13    0.29
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0.2
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σ low σ high

1 2 3 4

Pr(k2<=A<=k3) - Absolute Error

0.4

Figure 6. Stimuli (top) and absolute error (bottom) of estimates of Pr(k2 <=A<= k3). Error
bars in the results plot indicate a 95% confidence interval. Click the image to play the HOPs
animation. Each HOPs frame is a draw from the sampling distribution.

5.4 Three Variable Results 457

We hypothesized that subjects who used HOPs would make more accurate inferences about how 458

often B was the largest of the three values (H4). Our results provide strong support for H4. 459

Subjects who used HOPs had lower MAE than those who used violin plots and error bars 460

(F(2,573) = 43, p < 0.001, both pad j < 0.001, row 13). 461

6 Discussion 462

The experiment tasks were about as favorable as possible for the abstract, static representations. 463

Normal distributions lead to symmetric violin plots where the widest point is the mean and 464

median. To the extent that people have developed intuitions about error bars, they will have 465

developed them for independent, normal distributions. Even under these most favorable 466

conditions, performance with animated HOPS was comparable on the one-variable trials and 467

much better on the two- and three-variable trials. 468

Animated HOPs performed worse on some types of one-variable trials. One was estimating 469

the mean when the variance was high. As we argued in the Section 4, this was expected for two 470

reasons. First, the large variance meant subjects had to visually integrate over large distances 471

when the line jumped around a lot. Second, the imprecision due to examining a finite number of 472

frames was higher when the variance was larger. HOPs users were also slightly worse at 473

estimating the cumulative density of values between two thresholds when the variance was high. 474

HOPS also performed better on some one-variable trials, in particular estimating cumulative 475

densities when the variance was low. Violin plots had higher errors when estimating the 476

probability of a value above a threshold. Error bars had higher errors when estimate the 477

probability of values between two thresholds. We speculate that the low variance meant the 478

violin plots and error bars were compressed vertically, and thus it was difficult to assess exactly 479

where in the distribution a particular level fell, and how much area was above or below it. It is 480

not clear, however, why violin plots were especially problematic for estimating Pr(A > k1) 481
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Figure 7. Stimuli (left) and absolute error (right) of estimates of Pr(B > A). Error bars in the
results plot indicate a 95% confidence interval. Click the image to play the HOPs animation.
Each HOPs frame is a draw from the sampling distribution.
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Figure 8. Stimuli (top) and absolute error (bottom) of estimates of Pr(B > A,B >C). Error bars
in the results plot indicate a 95% confidence interval. Click the image to play the HOPs
animation. Each HOPs frame is a draw from the sampling distribution.

while error bars were especially problematic for estimating Pr(k2 ≤ A≤ k3). Additional 482

research is needed to assess the robustness of this finding and develop an explanation for it. 483

In light of the common usage of error bars for presenting multiple independent distributions, 484

it is noteworthy how poorly subjects using these representations performed on tasks asking them 485

to assess how reliably a draw from one variable was larger than the other(s). On no task was the 486

mean absolute error less than 36 percentage points. That means, for example, that on row 9 (task 487

type 5), where the correct answer was 59%, subjects gave mean answers centered around 95% 488

and 23%(!) Many subjects reported values less than 50%, which are not plausible given that the 489

mean of B was larger than the mean of A. Performance was so poor with the abstract, static 490

representations that we suspected something must have gone wrong with our instructions or 491

recording of results. After careful checking, however, we did not find any obvious patterns to the 492

errors. We speculate that many subjects simply had no idea how to make a good guess. Some 493

may have followed the heuristic of mentally substituting a simpler question, such as the mean 494

difference between B and A. Subjects from the same pool who used HOPs, on the other hand, 495

showed markedly better performance. 496

A question that arises from our results is exactly what strategies people use in order to infer 497

properties of the distribution when interacting with HOPs. In informal pilots, different people 498

appeared to employ different heuristics in integrating over multiple frames. Some explicitly 499

performed silent-counting [33] whereas others generated estimates in some other way. One 500

possibility is that viewers are making use of ensemble representations which allow for a form of 501

“averaging” across multiple objects and which have been demonstrated to facilitate statistical 502

reasoning [38]. Recent work has demonstrated that these mechanisms can also be employed in 503

temporally-varying situations [39] similar to HOPs. It is also possible that different heuristics 504

are used in different situations or combined in some way. Our own experiences with using HOPs 505

lead us to speculate that people may be combining counting of outcomes that display a pattern of 506

interest and approximation. For example, a viewer might count the number of frames in which B 507

is the largest in our three-variable task for a short while, then estimate the total number of frames 508

they viewed while counting to infer the probability. Further work is necessary to determine if 509

one strategy is better than another in producing estimates. 510
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We expect HOPs to be better for estimating very reliable outcomes regardless of the strategy 511

a viewer employs. If an outcome almost never occurs, it is easy to notice and count its 512

occurrences, even with a fast frame rate. If an outcome almost always occurs, it is easy to notice 513

or count when it does not. For intermediate frequencies, however, it may be more difficult, and 514

performance is more likely to be impacted by frame rate. The results of our study do not provide 515

clear evidence on this conjecture. In row 4, where Pr(A > k1) approaches 1, the MAE for HOPs 516

was lowest. On the other hand, the next best MAE for HOPs was row 11, where Pr(B > A) was 517

76%, an intermediate level of reliability. 518

6.1 Limitations 519

We note several limitations of our study. First, we know relatively little about our Mechanical 520

Turk subject pool. We followed common practices for ensuring high-quality participation, such 521

as restricting participation to U.S. subjects, paying a relatively high wage, informing subjects of 522

incentive bonuses for correct answers, and discarding subjects who incorrectly answered 523

questions about the location of the red dot. The subjects were probably above-average in 524

numeracy relative to the entire U.S. population, since they understood error bars and violin plots 525

well enough to have low error rates on some of the one-variable trials. We do not know, however, 526

whether specific sub-populations may perform better or worse with HOPs or with the abstract, 527

static representations. An important step for future work is to perform a similar experiment with 528

other subject pools, such as individuals who have recently completed a course in probability and 529

statistics and individuals who have taken such a course some time in the past but not recently. 530

Second, the tasks we employed may have been special in some way. For example, while 531

subjects could do reasonably well at estimating the mean and cumulative densities of a single 532

random variable using HOPs, we did not ask them to perform those same inferences for one of 533

the variables presented in a two- or three-variable animation. It might be difficult to tune out the 534

bar for another variable and focus only on one variable at a time. It also might be difficult to 535

perform pairwise comparisons of variables that are visually separated, such as assessing 536

Pr(A >C) in a three-variable plot where B is shown between A and C. 537

Third, our study described the plots as showing values observed in actual samples. In 538

practice, HOPs may be used to convey outcomes generated from a single input data set, such as 539

the mean of the data. The framing of the individual HOPs would then need to describe the idea 540

of a hypothetical outcome as another draw from the sampling distribution. An important next 541

step is to replicate our results with summary statistics that describe the sampling distribution, 542

such as error bars that instead represent a 95% confidence interval. For a lay audience, of course, 543

this would need to be done without reference to sampling distributions. It is not clear whether it 544

is possible to do this effectively. 545

Fourth, we did not test all abstract, static representations. There are many other possibilities 546

besides error bars and violin plots. Some of them may have better performance. 547

Fifth, we did not test special purpose representations that were tuned to the particular 548

comparative questions that we asked. For example, in the two-variable case we could have 549

created the composite variable B−A and shown error bars or violin plots for its distribution. For 550

the three-variable case we could have have created the composite variable B−max(A,C) and 551

shown a representation of its distribution. For any specific analytic question, of course, the 552

representation that makes it easiest to answer that question is simply to show the answer. 553

Generally, the goal of a visual representation is to provide intuitions and a chance to explore for 554

patterns. In order to assess whether subjects had developed a good intuitive sense of the data that 555

was presented, we asked specific analytic questions. Tailoring the visual representation to those 556

specific questions would, in some sense, be cheating. Thus, we considered only generic 557

representations of distributions that can support estimation of answers to many analytic 558

questions. 559

Sixth, we did not test any static representations of finite (concrete) outcomes. One intriguing 560
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possibility are one-dimensional scatterplots of hypothetical outcomes, or variants such as the 561

beeswarm plot [40]. These would have the advantage of not requiring users to integrate visually 562

over time. Untrained users, however, may find it easier to understand each frame in an animation 563

as a representation of one concrete outcome than to understand each dot in a static representation 564

as a representation of one concrete outcome. Further research is needed. 565

Finally, we did not prompt subjects to explain their conclusions about the data or uncertainty. 566

Subjects’ explanations of how they thought about answering the questions might have provided 567

clues about whether they were explicitly counting with HOPS and what heuristics they were 568

using to answer the questions with the two- and three-variable error bar and violin plots. 569

6.2 Precision of Inference from HOPs 570

How many hypothetical outcomes from a distribution does a viewer need to see in order to 571

assess properties of the distribution like the mean, the standard deviation, or the probability that 572

the value will be above a threshold k? This number will be impacted by the distribution of the 573

target property, as well as how effectively the viewer processes and integrates the information. 574

We can, however, establish an upper bound on the precision of inferences if we assume that the 575

viewer perfectly processes the information presented. 576

For example, suppose that the viewer’s task is to give an estimate µ of the mean µ of a 577

continuous distribution X with standard deviation σ . The viewer is presented n frames of an 578

animated slideshow, where each frame presents one real number outcome drawn from the 579

distribution. This is the classic task that introductory statistics textbooks use to introduce the 580

idea of sampling distributions. The best estimate of the mean of the distribution is the mean of 581

the n hypothetical outcomes (a sample of size n). The precision of that estimate is inferred from 582

properties of the sampling distribution of the mean. That is, we imagine taking infinitely many 583

samples from the original distribution, each sample being of size n, and collecting the means of 584

all those samples. The collected means come from a distribution which is called the sampling 585

distribution of the mean. According to the Central Limit Theorem, as n gets large, the sampling 586

distribution of the mean will be normally distributed, even if the original distribution was not 587

normally distributed. The standard deviation of the sampling distribution of the mean will be 588

σX = σ/
√

n. Thus, σ/
√

n expresses the precision that will be possible when estimating the 589

mean of X based on n samples. If σ = 10 and n = 25, then 95% of samples will have estimates 590

for µ within 1.96∗10/
√

25 = 3.92 of the true µ . Looking at more frames in the HOPs 591

animation will increase the potential precision, giving a smaller confidence interval, but the 592

value of extra frames diminishes. With four times as many frames, 100 rather than 25, the size of 593

the confidence interval is cut in half. 594

As another example, suppose that the viewer’s task is to give an estimate of p = Pr(X > k). 595

One possible procedure would be to notice, for each frame whether the displayed value is bigger 596

than k or not, without noticing how much bigger or smaller. Then, the subject could count the 597

number of frames out of n where X > k and use that to estimate the true probability p. Again, it 598

is possible to derive analytically the properties of that sampling distribution. The standard 599

deviation of the sampling distribution will be
√

p(1− p)/n. Thus, for example, if p = .66 and 600

n = 25, the standard deviation will be 0.094, meaning that 95% of the time the estimated 601

probability p will be within ±19 percentage points of the true mean p. Looking at 100 rather 602

than 25 HOP frames would cut this in half; 95% of the time the estimated probability will be 603

within ±9 percentage points of the true mean. 604

Of course, viewers are not restricted to coding each frame in a binary way, as the presence or 605

absence of some property. For the task of assessing p = Pr(X > k), the viewer may intuit 606

something from how far particular values are above or below k. Thus, they may be able to make 607

more precise estimates than ±9 points after viewing 100 frames. However, as the outcome plots 608

and tasks get more complicated, it may become harder to do more with the plot than just 609

noticing whether a binary property is true. 610
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6.3 Frame Rates and Interactivity 611

The frame rate, how quickly the animation advances to the next frame, is another important 612

design consideration for animated HOPs. Faster frame rates are likely to make it easier to 613

perceive trends such as the variability of a value between frames. It is also likely that a viewer 614

will see more frames with a faster rate than a slower rate, increasing the precision of their 615

estimates. On the other hand, faster frame rates will also make it more difficult to infer 616

properties of each frame. 617

Deriving the optimal frame rate and understanding how it relates to different types of 618

inferences and properties of the data distributions is an important area for future exploration of 619

HOPs. We use a frame rate of 400ms for our comparative experiment between HOPs and static 620

alternatives. Viewers in pilot studies identified this rate as effective for the target inferences in 621

our study (estimating Pr(A > k), etc.) without being too fast (resulting in reports from viewers 622

of mental fatigue) or too slow (resulting in reports that integrating information across frames 623

was too difficult). We note that 400ms provides enough time for eye motion and 624

silent-counting [33]. As noted above, the accuracy of inferences for very reliable outcomes are 625

less likely to depend on the frame rate. Viewers may prefer faster frame rates than 400ms in 626

these cases for more efficient use of HOPs. 627

Because individuals may respond differently to frame rates, we also provide subjects of our 628

experiment with interactive controls that pause the animation and step forward or back one 629

frame at a time. We display the frame number in a corner of the animation to further support 630

integration for viewers who wish to count frames that have a given property (e.g., B > A) and 631

then estimate the probability. 632

6.4 Animation vs. Other Encodings of Frequencies 633

Consider the rate at which the line appears at a specific vertical point in a HOPs animation. Call 634

it the blink rate, or the expected number of appearances of the horizontal line in a time period. 635

There is a direct analogy between the blink rate and the encodings used in abstract 636

representations of univariate distributions. Specifically, the width of a violin plot or the color 637

intensity (e.g., saturation or α-blending) of a gradient plot (see Figure 9 and [41]) encode the 638

probability densities of the distribution. HOPs encode these probability densities in the blink 639

rate of the lines at each y-value. 640
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Figure 9. A gradient
plot, where probability
density of each possible
outcome is encoded
using mark opacity.

There is a more 641

direct correspondence between HOPs and gradient plots (see Figure 9 642

in the limiting case. As the frame rate of HOPs reaches the flicker 643

fusion threshold [42], the viewer will begin to perceive the animated 644

HOPs as a single, static abstract representation of the distribution. 645

The displayed animation will “converge” to a gradient plot. 646

A similar effect can be achieved at slower frame rates by adjusting 647

the HOP process slightly so that each frame leaves a trace of 648

the line, which fades slowly. Then, at any point in time, the displayed 649

frame would show multiple blue lines with different intensities. The 650

benefit of the gradient plot is that reading the probability at a specific 651

horizontal coordinate is likely to be perceptually easier than reading 652

the probability from the blink rate. Similarly, violin plots encode 653

the probability density for a given horizontal coordinate as line 654

width [43], which is generally considered even easier to decode [16]. 655

Thus, if the primary task is to find the probability density 656

at a specific point or to find the mean of the distribution, the elevated 657

frame rate may be desirable. The trade-off, however, is that other 658

benefits of HOPs are likely to be eliminated in this “limiting case”. Specifically, it will be harder 659

to do direct inference by estimation and counting across frames. We hypothesize that both task 660
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types could be supported by allowing the viewer to interactively manipulate the frame rate 661

(speed up and slow down). 662

6.5 Extensions and Variations of HOPs 663

Frame Rates & Interactivity—Of course, the speed at which HOPs are presented, and the degree 664

of interactivity allowed will impact the effectiveness of the method, perhaps in different ways for 665

different viewers. While we identified 400ms as a reasonable speed for inferences across 666

distributions with varying reliability levels via informal experiments, an important task for future 667

study is to systematically study the impacts on viewers’ accuracy of varying speed of animations 668

and interactive controls. 669

We suspect that viewers of HOPs could make even more accurate probability inferences if 670

provided with interactive graphical annotations. For example, a viewer might draw a line at the 671

top and bottom of an interval of values that define an outcome of interest to more easily infer the 672

probability of this outcome. 673

Small Multiples Rather than showing many hypothetical outcome plots as frames in an 674

animation, they could all be displayed simultaneously, as small multiples. In that case, viewers 675

would have to integrate visual information across space rather than across time. Some inferences 676

would be easier. For example, eye gaze could rest longer on frames where values were closer 677

together. On the other hand, comparisons between frames might be harder across spatially 678

distributed multiples than between frames that appear sequentially in the same location 679

sequentially. One important drawback of small multiples is that there is rarely enough space for 680

very many of them. Our HOPs subjects viewed about 90 frames on average for each task (36 681

seconds if run continuously). It would be visually daunting to see a screen full of 90 very small 682

plots. With many fewer plots, the imprecision due to sampling would be greater, as explored in 683

Section 6.2. 684

Generating Draws & Stability—Several decisions are particularly critical for HOPs to 685

support accurate inferences. The first important decision involves the integrity of the process 686

used to generate draws from the distribution. The process for generating the hypothetical 687

outcomes should be analogous to the sampling process that resulted in the observed input data 688

set [44]. We refer the analyst interested in apply HOPs to the considerable literature on 689

resampling methods for guidelines on selecting a valid process. The second important decision 690

is how visual stability will be maintained between plots to ensure that they are easily 691

comparable. For more complex plot types, beyond what can be shown in a bar chart, more 692

sophisticated manipulation of the data-to-visual mapping functions may be necessary. Another 693

area to explore is how HOPs frames should be ordered. Presently these are ordered randomly, 694

but other options include minimizing the between frame changes [21], or devising a way of 695

counter-balancing frames. 696

Combined Representations—It may be useful to combine HOPs with more abstract, static 697

depictions, such that the static display is more fully understood. For example, animated HOPs 698

may be useful in helping people understand the meaning of the interval conveyed by an error bar 699

or area of a violin or gradient plot. HOPs could easily be overlaid on other forms, or enhanced 700

with additional information (e.g., a static median bar). 701

7 Conclusion 702

We present and study Hypothetical Outcome Plots as an alternative to static depictions of 703

probability distributions. To create HOPs, we generate draws from a probability distribution and 704

visualize each draw as an outcome plot. When the analyst maintains a consistent mapping 705

function (visual stability) across plots, a viewer can integrate the information from the set of 706

outcomes to make inferences. HOPs facilitate thinking about properties of distributions via 707

counting in addition to probabilities, which is likely to ease data interpretation for many 708
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viewers [5, 6]. HOPs are more expressive of joint distributions than alternative representations 709

like error bars and violin plots. 710

Avenues for future study of HOPs are numerous. For example, we have only begun to 711

understand the cognitive processes by which viewers integrate information across frames. 712

Additionally, systematic studies of frame rates and interactive capabilities would allow us to 713

better deploy HOPs across diverse datasets and tasks. Finally, maintaining visual stability will 714

be more challenging for more complex types. 715

Our study results provide strong evidence that HOPs lead to more accurate estimates of 716

properties even of very simple multivariate distributions consisting of just two and three 717

variables, both when the variables are independent or correlated. We also find that HOPs 718

perform substantially worse on univariate judgments only when the variance is high and the task 719

is to estimate the mean. However, we believe that extensions such as the ability to vary the frame 720

rate may support these estimates as well. Other adaptations of HOPs and increased viewer 721

practice may also lead to further improvements in their ability to interpret HOPs. In the long run, 722

the widespread availability of interactive devices will allow visual presentation of uncertainty to 723

shift from its current emphasis on static, abstract representation of probability distributions to 724

dynamic, concrete presentation of hypothetical outcomes from those distributions. 725
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