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This file contains supporting information for the results presented in the manuscript “Tracking social 

contact networks with online respondent-driven detection: who recruits whom?”. The supportive 

information is presented in the order as it is discussed in the main manuscript.  

 

In chapter 1 we explained in detail how numbers of contacts and the effects of covariates were 

analysed. In chapter 2 we investigated the influence of participants’ characteristics on the size of a 

recruitment tree. In chapter 3 we displayed the mixing matrices by age of our sample and of the 

Dutch POLYMOD separately. Here we also provided the absolute number of self-reported symptoms 

and a visualisation of the mixing patterns by degree. In chapter 4 we analysed the distance between 

recruiters and their recruits, and quantified the extent to which a recruiter who lives in a certain 

region in the Netherlands invited contact persons that live in the same municipality as the recruiter 

is working and/or studying. 
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1. Numbers of contact persons and the effect of covariates  
In the questionnaire participants were asked for number of contact persons during one full day 

(‘yesterday’), this number was defined to be a participant’s ‘degree’. First, we looked at the 

distribution of degree, stratified by days of week and the locations that were predefined in the 

questionnaire (Figure A1). For at home and at other places the distributions of degree were fairly 

similar. During weekdays participants reported more contact persons at work or university, then 

during the weekend. There were no large differences in the total degree distributions (see ‘at all 

locations’) between weekdays and weekends. 

 

Figure A1. Contact persons stratified by days of the week and location of contact. In each 

distribution the mean (solid line) and median (dotted line) is displayed. Participants with more than 

500 contact persons are not displayed. 

 

We investigated which covariates influence degree using a regression model. Firstly, we investigated 

which theoretical distribution best fitted the empirical distribution using the R package ‘GAMLSS’.  

The degree distribution showed strong over-dispersion, with a mean degree of 19.6 per participant 

(median: 11.0; SD: 35.3). Table A1 displays the parameter estimates and AIC’s of the various fitted 

distributions. Note that the power-law was fitted with the GAMLSS function “PARETO2”. Cumulative 

distributions with a power-law form are sometimes said to follow a Pareto distribution (or Zipf ’s 

law) [1]. Figure A2 displays the various distributions in a reverse cumulative probability distribution 

plot (Log10 transformed). 
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 Table A1. Theoretical distributions fitted to empirical degree distribution. 

 

 

 

 

 

a Continuous distributions fitted to a discrete distribution. 

 

 

Figure A2. Fitted theoretical distributions to empirical degree distribution. The empirical degree 

distribution (number of reported contact persons) is displayed with black circles. The figure displays 

four theoretical distributions that were fitted to the empirical degree distribution, namely: the 

Poisson-inverse Gaussian distribution (PIG, discrete distribution), the Negative Binomial distribution 

(NB, discrete distribution), the Pareto 2 distribution (continuous distribution) and the Log-normal 

distribution (continuous distribution). 

 

 parameter(s) AIC 

Pareto 2 (α; xm)a 49.46; 0.28 12179 

Log normal (μ; σ)a 11.67; 1.03 12184 

Poisson Inverse Gaussian (μ; λ) 19.62; 1.96 12207 

Negative binomial (μ; k) 19.61; 1.12 12475 

Geometric (discrete) exponential (p) 19.61 12485 

Poisson (λ) 19.61 48667 
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Based on the AIC’s, the continuous distributions Log-normal and Power-law best fitted the empirical 

degree distribution [2]. However, these are continuous distributions fitted to a discrete distribution. 

Therefore, we chose the first best fitted discrete distribution: the Poisson-inverse Gaussian (PIG). 

The PIG distribution, an alternative to negative binomial, has the potential for modelling highly 

dispersed count data due to the flexibility of Inverse Gaussian distribution [3, 4]. We applied the PIG 

distribution in the regression analysis.  

We used a PIG regression model to investigate the effect of the following covariates on degree: age, 

sex, household size and ILI, and days of the week. The reference categories were the 0 ̶ 39 age group, 

females, one-person households, no self-reported ILI, and Sunday. Table A2 shows the output of the 

regression model. IRR stands for incidence rate ratio that are standard provided when conducting a 

PIG regression analysis.  

Table A2. Output Poisson Inverse-Gaussian regression model 

  IRRa SE t value Pr(>|z|) 2.5% 97.5% 

Intercept 13.055 0.109 23.527 0.000 10.540 16.171 

40-49 0.969 0.094 -0.338 0.735 0.805 1.166 

50-64 0.928 0.081 -0.918 0.359 0.791 1.089 

65+ 0.692 0.093 -3.985 0.000 0.577 0.829 

male 1.053 0.058 0.887 0.375 0.940 1.180 

household size:2 1.019 0.070 0.263 0.792 0.887 1.170 

household size:3 1.441 0.094 3.896 0.000 1.199 1.732 

household size:4 1.552 0.094 4.655 0.000 1.290 1.867 

household size:5 or more 1.809 0.121 4.888 0.000 1.426 2.294 

ILI 0.367 0.188 -5.320 0.000 0.254 0.531 

Monday 1.334 0.089 3.237 0.001 1.120 1.588 

Tuesday 1.837 0.098 6.192 0.000 1.515 2.226 

Wednesday 1.597 0.105 4.469 0.000 1.301 1.961 

Thursday 1.615 0.107 4.470 0.000 1.309 1.993 

Friday 1.423 0.122 2.897 0.004 1.121 1.806 

Saturday 1.269 0.109 2.197 0.028 1.026 1.570 

a IRR: incidence rate ratio. Number of observations: 1559, df: 17 AIC: 12050.81, Global deviance: 

12016.81 
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2. Descriptive analysis of recruitment trees 
We conducted a descriptive analysis to investigate which characteristics of individuals in a 

recruitment tree influence the total size of a tree. Firstly, we plotted the number of nodes, i.e., 

participants who completed the questionnaire, stratified by characteristics of seeds (Figure A3). 

The characteristics of seeds did not appear to influence the number of nodes in a recruitment tree. 

Figure A3-B did show a slight increase in tree size for a larger proportion of trees with a female seed, 

e.g., of all trees with a node size of 4 more than 75% had a female seed. This effect of female seeds 

was not shown for trees with a size of 5 or more nodes, which is probably due to the lower number 

of trees with those sizes. 

In Figure A4 we investigated the relationship between tree size and the composition of the entire 

recruitment tree. Overall, the larger the proportion of women or individuals with a bachelor’s 

degree or higher in a recruitment tree, the larger the tree size was on average (see Figures A4-A to 

C). The average age in a recruitment tree did not appear to influence the number of nodes in a 

recruitment tree (Figure A4-D). 
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Figure A3. Relation between tree size and characteristics of seeds. With (A) age of seeds, (B) sex of 

seeds, (C) age and sex, (D) household size, (E) educational level of seeds, (F) number of contacts of 

seeds (degree). 
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Figure A4. Relation between tree size and composition of trees. With (A) proportion of females in a 

tree, (B) proportion of individuals with a bachelor’s degree or higher, (C) tree size stratified by 

number of individuals in a tree with a bachelor’s degree or higher and sex, (D) the average age of 

individuals in one tree. 
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3. Recruitment mixing patterns 
 

3.1 Mixing by age and comparison with POLYMOD 
We compared the recruiter-recruit matrix stratified by age with the participant-contact matrix by 

age collected during the Dutch POLYMOD study (see Figure A5) [5, 6]. We used the Dutch POLYMOD 

data that was corrected for digit preference by participants for the age of contact persons, details on 

this correction can be found in Van de Kassteele, J., et al. [6].  

 

Strong assortative mixing patterns by age were observed in both matrices. However, in our sampled 

recruiter-recruit matrix the younger age groups (below 20 years of age) were not represented. In the 

Dutch POLYMOD study these younger age groups were purposely oversampled to be able to analyse 

their contact patterns, as the hypothesis is that children play a central role in the transmission 

dynamics of influenza pandemics [6]. Children have frequent contact within their own groups and 

they have a wide range of contacts, therewith connecting all age groups [7].  

Figure A5. Comparison with the Dutch POLYMOD study. We compared the recruiter-recruit matrix 

stratified by age with the participant-contact matrix by age collected during the Dutch POLYMOD 

study [6]. (A) Sampled Recruiter–Recruit matrix, with respect to age; the values and colours indicate 

for each age group of recruiters the proportion of contact persons recruited. Thus, e.g. 0.43 for 

recruits between “20 ̶ 24” indicates that from all recruits recruited by a recruiter from age group “20 ̶ 

24”, 43% was between 20 ̶ 24 years. (B) POLYMOD participant–contact matrix, the values and 

colours indicate for each age group of POLYMOD participants the proportion of contact with persons 

of different age groups. POLYMOD had a correlation for age of 0.47 [0.45 ̶ 0.48], p-value < 2.2e-16; 

df: 10186. 
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In Figure 2D (see main manuscript) we compared the number of contact persons reported at 

different locations by our participants, with the contacts reported at different locations in the Dutch 

POLYMOD study [6]. For this comparison the sample was weighted for the size of age groups in the 

POLYMOD study. The applied weights can be found in Table A3. 

 

 Table A3. Weighting sample for a comparison with POLYMOD 

a The weights for age groups in our sample were obtained by dividing the POLYMOD  

proportion by the corresponding sample proportion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age group POLYMOD SAMPLEa Weight 

0 ̶ 39 439 (56.1%) 268 (17.2%) 3.27 

40 ̶ 49 76 (9.7%) 256 (16.4%) 0.59 

50 ̶ 64 132 (16.9%) 656 (42.1%) 0.40 

65+ 135 (17.3%) 379 (24.3%) 0.71 



10 

 

3.2 Mixing by degree 
We plotted the recruiter-recruit matrix by degree (see Figure A6). We observed random recruitment 

by degree between a recruiter and a recruit, which corresponds to the correlation coefficients for 

degree displayed in Table 3 in the main manuscript. As the dots clustered in the left corner, we 

looked more closely at the distribution up till an individual degree of 50. Furthermore, we plotted 

the distribution on a log10 scale, which also illustrated random mixing. 

 

 

Figure A6. Recruiter degree versus recruit degree. (A) Untransformed. (B) Untransformed but axes 

limited to a degree of 50. (C) Log10 transformed. 
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3.3 Mixing by self-reported symptoms 
Table A4 displays the absolute number of times a symptom was reported by participants. Runny or 

blocked nose was most frequently reported and vomiting the least frequent. The second column 

displays the number of recruiter-recruit pairs where only one of them reported the concerning 

symptom. Third column displays the number of pairs where both the recruiter and recruit reported 

the particular symptom. Runny and blocked nose was again most frequently reported, by either one 

of them or by both individuals in a pair. 

Table A4. Self-reported symptoms and recruiter-recruit pairs with symptoms. 

 Nsymptom reported Npairs only 1 had symptom Npairs both had symptom 

Fever 104 44 4 

Chills 134 73 5 

Runny or blocked 
nose 

422 162 41 

Earache 74 36 1 

Sore throat 267 136 15 

Cough 338 125 27 

Stuffiness 146 68 4 

Headache 360 153 36 

Muscle / joint pain 292 149 30 

Diarrhea 88 51 7 

Vomit 26 14 0 

Other symptoms 91 59 3 
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4. Distance between recruiter-recruit pairs 
We investigated the distance between recruiters and recruits based on the provided 4-digit postal 

codes. The distribution of the distance between recruiter-recruit pairs was right-skewed (Figure A7). 

Based on the distribution in Figure A7, we categorised for Table 4 (see main manuscript) distance 

into three groups: same postal code, 1 ̶ 10 km and > 10km. It appeared that for the first group (same 

postal code), recruiters invited slightly more similar aged recruits compared to the other two 

distance groups (see Figure A8). This is confirmed by the correlation coefficients for age in Table 4 in 

the main manuscript. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A7. Histograms of distances between recruiter-recruit pairs in kilometres (km).  
 

 

The mean distance between seeds (wave 0) and their recruits in wave 1 was higher than the mean 

distance between recruiter-recruit pairs in consequent waves. Figure A9 displays the distances for 

different link steps, as seen from the seed. Thus link step 1 is between seeds and their recruits in 

wave 1.  
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Figure A8. Age distributions of recruiters and recruits stratified by distance. Pink colour: recruiters; 
blue colour: recruits. 
 

 
 
Figure A9. Distance between recruiter-recruit for different link steps. Link steps here indicate links 
steps as seen from the seed. Thus, link step ‘1’ indicates the link between seeds and recruits-in-
wave-1; link step 2 the link between recruiters-in-wave-1 and recruits-in-wave-2, and so on. 
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4.1 A logistic regression analysis 
The Netherlands counts 12 provinces that represent the administrative layers between the national 

government and the local municipalities (i.e. subdivisions of a province). We categorised the 

Netherlands into four regions: North-Netherlands (Friesland, Groningen, Drenthe), Middle-

Netherlands (Overijssel, Flevoland, Gelderland, Utrecht), West-Netherlands (North-Holland, South-

Holland) and South-Netherlands (North-Brabant, Limburg, Zeeland).   

 

Figure 4 demonstrated similar patterns between the recruitment trees (Figure 4A) and the 

commuting network (Figure 4B). Therefore, we investigated for Dutch participants the relationship 

between the geographical locations where a recruiter works and/or studies, and the location where 

their recruited contact person lives. We excluded participants living in Belgium. Home location was 

defined by the provided 4-digit postal code. The work location was defined by the city or village that 

was provided in the questionnaire. 

 

Our goal was to quantify the extent to which a recruiter who lives in a certain region (four regions 

defined, see above) invites contact persons that live in the same municipality as the recruiter is 

working/studying. 

 

We used a mixed effect logistic regression model to estimate the binary outcome:  

- recruiter did not invite a recruit who lives in the same municipality as the recruiter is 

working or studying (0) 

- recruiter invited a recruit who lives in the same municipality as the recruiter is working or 

studying (1) 

 

This outcome variable was created through recoding: 

- “municipality where recruiter works/studies” ≠  “municipality where his/her recruit lives” [1] 

- “municipality where recruiter works/studies” =  “municipality where his/her recruit lives” [2] 

 

The log odds of the binary outcome was modelled as a linear combination of the variables “region of 

residence recruiter” (four regions) and “recruiter lives and works in same municipality” (binary: 

yes/no), with the region West-Netherlands and ‘recruiter not working in the same municipality as 

he/she is living’ as a reference group. The random intercept was provided by recruiter ID, to correct 

for differences between recruiters, e.g., in numbers of contact persons invited per recruiter and type 

of recruited contact persons.  
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Table A5 displays the 342 recruiters that were analysed stratified by outcome, location, and whether 

or not they live and work in the same municipality. For these 342 entries, the recruiter and his/her 

recruit: 

- indicated that they lived in the Netherlands 

- provided a work or study location in the questionnaire. 

 
Table A5. Frequency table 

Province of residence 
 

works and 
lives in same 
municipality 

Recruiter did not invite 
recruit in same 
municipality as he/she 
is working/studying [1] 

Recruiter invited recruit 
in same municipality as 
he/she is 
working/studying [2] 

Total 

South-Netherlands yes 15 (40.5%) 22 (59.5%) 37 

 no 19 (79.2%) 5 (20.8%) 24 

Middle-Netherlands yes 33 (44.6%) 41 (55.4%) 74 

 no 55 (90.2%) 6 (9.8%) 61 

West-Netherlands yes 28 (44.4%) 35 (55.6%) 63 

 no 52 (96.3%) 2 (3.7%) 54 

North-Netherlands yes 5 (27.8%) 13 (72.2%) 18 

 no 10 (90.9%) 1 (9.1%) 11 

Total recruiters*  217 125 342 

*20 recruiters from Belgium were excluded. 144 recruiters indicated retirement, but a majority of 
them also indicated a location where they (still) work. 
 

We used the fitted logistic regression model to estimate probabilities of the outcome (2) for the four 

regions in the Netherlands (i.e., predictions based on not knowing what recruiter ID is being 

predicted). Confidence intervals (95%) were calculated by both using fixed-effects uncertainty only, 

as well as by using fixed effects uncertainty + random effect variance.  

 

Table A6 shows the output of the mixed effect logistic regression. The variable working and living in 

same municipality significantly influenced the outcome. Table A7 displays the estimated 

probabilities. Participants living in the North of the Netherlands had the highest probability, namely 

0.774 [95% CI 0.433, 0.939], to invite a recruit in the municipality where they also work and live.  
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Table A6. Fixed effects 

  Estimatea SE z value Pr(>|z|) 

Intercept -3.632 0.749 -4.851 1.231E-06 

Middle-Netherlands 0.288 0.521 0.553 5.802E-01 

South-Netherlands 0.904 0.641 1.410 1.587E-01 

North-Netherlands 0.982 0.819 1.198 2.308E-01 

Work and live in same 
municipality 3.882 0.764 5.082 3.730E-07 

a AIC 351.9; BIC 375.0; logLik -170.0; deviance 339.9; Random effect variance 3.319 (SE: 1.822); subjects: 223 
 
 
Table A7. Estimated probability of inviting a contact person in the municipality where recruiter 
works or studies. 

Region 

Recruiter works/ 
studies and lives 
in same 
municipality? 

Predict. 
Prob. 

CI based on fixed-
effects uncertainty 

ONLY 

CI based on FE 
uncertainty + RE 

variance 

2.5% 97.5% 2.5% 97.5% 

West-Netherlands no 0.026 0.006 0.106 0.001 0.576 

Middle-Netherlands no 0.034 0.009 0.121 0.001 0.633 

South-Netherlands no 0.061 0.016 0.209 0.001 0.764 

North-Netherlands no 0.066 0.012 0.290 0.001 0.801 

West-Netherlands  yes 0.562 0.361 0.745 0.030 0.982 

Middle-Netherlands yes 0.631 0.439 0.789 0.040 0.986 

South-Netherlands yes 0.760 0.513 0.905 0.066 0.993 

North-Netherlands yes 0.774 0.433 0.939 0.062 0.994 
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