A Serum Metabolomic Fingerprint of Bevacizumab and Temsirolimus Combination as First-Line Treatment of Metastatic Renal Cell Carcinoma

Elodie Jobard^{a, b}, Ellen Blanc^b, Sylvie Négrier^b, Bernard Escudier^c, Gwenaelle Gravis^d, Christine Chevreau^e, Bénédicte Elena-Herrmann^{a*} and Olivier Trédan^{b*}.

This document contains:

- **Supplementary Figure 1:** Representative 800 MHz ¹H CPMG spectrum and ¹H -¹³C NMR HSQC spectrum of blood serum for a mRCC cancer patient.
- **Supplementary Table 1:** Metabolites identified by NMR in blood sera from TORAVA patients.
- **Supplementary Figure 2:** O-PLS Model validations by re-sampling 1000 times the model under the null hypothesis,
- **Supplementary Figure 3:** Sensitivity analysis of O-PLS discrimination between W0 and W2 for the experimental arm A
- **Supplementary Table 2:** Goodness-of-fit model parameters for PLS models discriminating the histoprognosis features of tumours according to the treatment and collection time of serum samples.
- **Supplementary Table 3:** Goodness-of-fit model parameters for O-PLS models discriminating the experimental arm and the two standard therapies according to collection time of serum samples.
- **Supplementary Figure 4:** O-PLS loadings plot after univariate analysis at W5-6 between arms A and B.

Supplementary Figure 1: Representative ¹H CPMG spectrum (A) and a ¹H -¹³C NMR HSQC spectrum (B) at 800 MHz for a mRCC cancer patient treated with the temsirolimus and bevacizumab combination.

Supplementary Table 1: Metabolites identified from 800 MHz 1D and 2D NMR profiles of blood sera from patients of the TORAVA trial.

ID	Name	δ ¹ H (ppm)	δ ¹³ C (ppm)	Multiplicity	Moieties	Observed
1	1-methylhistidine	7.04		s	H4	JRes,TOCSY
		7.76		S	H2	CPMG, JRes, TOCSY
2	3-hydroxybutyratic acid	1.19	24.7	d	γCH₃	CPMG, JRes, TOCSY, HSQC
		2.30	49.1	q	half α CH₂	CPMG, JRes, TOCSY, HSQC
		2.40	49.1	q	half α CH ₂	CPMG, JRes, TOCSY, HSQC
		4.13		m	βCH	JRes, TOCSY
3	3-hydrophenylacetic acid	6.86		m		CPMG, TOCSY
		7.24		t		CPMG, TOCSY
4	Acetic acid	1.91	25.7	s	CH₃	CPMG, JRes, TOCSY, HSQC
5	Acetaoacetatic acid	2.27		S	CH₃	CPMG, JRes
		3.43		S	αCH₂	CPMG, JRes
6	Acetone	2.22	32.9	S	CH₃	CPMG, JRes, TOCSY, HSQC
7	Alanine	1.46	19.3	d	β CH ₃	CPMG, JRes, TOCSY, HSQC
		3.76		q	α CH	CPMG, JRes, TOCSY
8	Albumin Lysyl	2.89		t	εCH₂	CPMG, TOCSY, JRes
		2.96	41.9	t	εCH₂	CPMG, TOCSY, HSQC
		3.01	41.9	t	εCH₂	CPMG, TOCSY, HSQC
9	Aspartic Acid	2.68		dd	half βCH₂	JRes, TOCSY
		2.80		dd	half βCH ₂	JRes, TOCSY
		3.89		dd	αCH	JRes, TOCSY
10	Betaine	3.26	56.3	s	CH₃	CPMG, JRes, TOCSY, HSQC
11	Cholesterol	0.66	14.3	m	C(18)H ₃ (in HDL)	CPMG, TOCSY
		0.70			C(18)H ₃ (in VLDL)	CPMG, TOCSY
		0.82	25.1	m	C(26)H₃ and C(27)H₃	CPMG, TOCSY, HSQC
		0.91	21.1	d	C(21)H₃	CPMG, JRes, HSQC
		1.01		S	C(19)H₃	CPMG
		1.11		m		CPMG
12	Choline	3.19	56.8	S	N(CH ₃) ₃	CPMG, JRes, TOCSY
13	Glycerophosphocholine	3.22	56.5	S	N(CH ₃) ₃	CPMG, JRes, HSQC
		3.62		m	βCH ₂	CPMG, JRes
		3.67		m	NCH₂	CPMG, JRes
		4.29	64	m	αCH ₂	JRes, HSQC
14	O-Phosphocholine	3.20	56.5	S	$N(CH_3)_3$	CPMG, TOCSY, JRes
4.7	<u></u>	3.58		m	βCH ₂	CPMG, JRes
15	Citrate	2.52		d	half CH ₂	CPMG, JRes, TOCSY
40	Orestine	2.07	20.0	d		CPMG, JRes, TOCSY
10	Creatine	3.03	32.0	s		CPMG, JRes, TOCSY, HSQC
17	Creatine Phosphate	3.93	32.6	5	CH.	CPMG, JRes, TOCST, HSQC
.,	creatine r nospilate	3.03	52.0	5	CH.	CPMG IRes TOCSY
18	Creatinine	3.04	32.6	<u> </u>	CH ₂	CPMG JRes TOCSY HSOC
	oroatilito	4 05	02.0	s	CH₃	CPMG JRes TOCSY HSQC
19	Ethanol	1.17		t	CH ₃	CPMG, JRes. TOCSY
20	Formate	8.45		s	СН	CPMG, JRes. TOCSY
21	β Galactose	4.53		d	H1	JRes
22a	α-Glucose	3.42	72.2	a	H4	CPMG, JRes. TOCSY. HSOC
		3.53	74	dd	H2	CPMG, JRes, TOCSY, HSQC
		3.71	75.3	t	H3	CPMG, JRes, TOCSY, HSQC
		3.72	63.4	dd	half C(6)H ₂	CPMG, JRes, TOCSY, HSQC
		3.83	74	ddd	H5	CPMG, JRes, TOCST, HSQC
		3.84	63.2	m	half C(6)H ₂	CPMG, JRes, TOCSY, HSQC
		5.23	94.6	d	H1	CPMG, JRes, TOCSY, HSQC

22b	β Glucose	3.24	76.8	dd	H2	CPMG, JRes, TOCSY, HSQC
	,	3.40	72.2	q	H4	CPMG, JRes, TOCSY, HSQC
		3.46	78.4	t	Н5	CPMG, JRes. TOCSY, HSQC
		3 48	78.3	t	H3	CPMG JRes TOCSY HSOC
		3.89	63.4	dd	half C(6)H	CPMG JRes TOCSY HSOC
		4 64	98.6	d	H1	CPMG JRes TOCSY HSOC
23	Glutamate	2 04	0010	m	half BCH	CPMG IRes TOCSY
20	Clatamate	2.04		m	half <i>BCH</i> .	CPMG IRes TOCSY
		2.11			half wCH	
		2.34		m		CPMG, JRes, TOCST
		3.72		m		
24	Glutamine	2.11		m	nair <i>pCH</i> ₂	CPMG, JRes, TOCSY
		2.46	33.9	m	half γ CH ₂	JRes, TOCSY, HSQC
		3.67		t	αCH₂	JRes, TOCSY
25	Glycerol	3.56	65.9	dd	half CH₂	CPMG, JRes, TOCSY, HSQC
		3.65	65.3	dd	half CH₂	CPMG, JRes, TOCSY, HSQC
		3.88	74.2	dd	C(2)H	CPMG, JRes, TOCSY, HSQC
26	Glycerol backbone	4.06	64.2	m	CH ₂OCOR	CPMG, JRes, TOCSY, HSQC
	of	4.25	64.2	m	CH ₂OCOR	CPMG, JRes, TOCSY, HSQC
	PGLYs* and TAGs**	5.20		m	β CH OCOR	CPMG, JRes, TOCSY
27	Glycine	3.55	44.3	S	CH ₂	CPMG, JRes, TOCSY, HSQC
28	NAC*** 1	2.04	24.8	S	NHCO CH ₃	CPMG, JRes, TOCSY, HSQC
29	NAC*** 2	2.07	24.9	s	NHCO CH ₃	CPMG, JRes, TOCSY, HSQC
30	Histidine	3.16		dd	half βCH ₂	CPMG, JRes, TOCSY
		3.98		dd	αCH	JRes
		7.03		s	H4	CPMG, JRes, TOCSY
		7.73		S	H2	CPMG, JRes, TOCSY
31	Isoleucine	0.93		t	δCH3	CPMG, JRes. TOCSY
		1 00		d	ßCH₃	CPMG JRes TOCSY
		1.28		m	α ν CH	IRes
		1.46		m	half v CH	IRes TOCSY
		1.40		m	BCH	IRes TOCSY
32	Isopropyl alcohol	1.00		h	CH.	CPMG IRes TOCSY
33		1.10	25.7	b	CH.	CPMG IRes TOCSY HSOC
55	Luciale	4 10	71 1	a	СН	CPMG IRes TOCSY HSOC
3/	Laucina	0.04	7 1.1	d	SCH.	
54	Leucine	0.04		d	SCH.	
		1.71	40 7	u		
		1.71	42.7	111 - 1-1		CPMG, JRes, TOCST, HSQC
		3.69	40.5	<u>dd</u>		
35	Fatty acids (mainly LDL)	0.84	10.5	t		CPMG, JRes, TOCSY, HSQC
		1.23	34.5			CPMG, JRes, TOCSY, HSQC
36	Fatty acids (mainly VLDL)	0.86	23.4	t		CPMG, JRes, TOUSY, HSQU
		1.28	20.4	m		CPMG, TOUSY, HSQU
07	F-the selds	0.00	27.3			
37	Fatty acids	0.93	24.8	m		CPMG, JRes, HSQC
		1.22	34.3	m		CPMG, JRes, HSQC
		1.27	25.2	m	CH_3CH_2 (CH_2) n	CPMG, JRes, HSQU
		1.30	25.4			CPMG, JRes, TOCST, HSQC
		1.32	00.0	m		CPMG, JRes, TOUSY
		1.09	20.9 20.5	m		
		2.0	29.5	m		CRMC IRes TOCSY LICCO
		2.23	00.Z	···		
		2.74	28	m		CRIVIC, JKES, TUUSY, HOUU
		0.∠3 5.00	120.4	m		CRIVIC, LUCST
		0.∠0 F 07	130.1	m ~~		CRIVIC, TOCSY, HOUC
		5.27	404 -	m		
		5.29	131.7	m	CH=CHCH2CH=CH	CPMG, JKes, TOCSY, HSQC
		5.31		m		CPING, TUUSY
	1 !	0.33		m		
38	Lysine	1.48		m	ү сп ₂	CPING, JKES, TOUSY
		1.69		m	δCH₂	CPMG, TOCSY

Supplementary material - Jobard et al.

		1.89		m	β CH₂	CPMG, JRes
		3.02		m	εCH₂	CPMG
39	Mannose	5.18		d	СН ОН	CPMG, JRes, TOCSY
40	Methanol	3.34		S	○CH ₃	CPMG, JRes, TOCSY
41	Methionine	2.13		S	S CH ₃	JRes, TOCSY
42	Phenylalanine	3.25		dd	half β CH₂	JRes
		3.97		dd	α CH	JRes
		7.30		m	H2, H6	CPMG, TOCSY
		7.34		m	H4	CPMG, TOCSY
		7.40		m	H3, H5	CPMG, TOCSY
43	Proline	2.00		m	γ <i>CH</i> ₂	JRes
		2.06		m	half βCH ₂	JRes
		2.36		m	half βCH ₂	JRes
		3.35		m	half γ CH ₂	CPMG, JRes
		4.12		m	α CH	JRes
44	Pyruvate	2.36		S	CH₂	CPMG, JRes, TOCSY
45	Succinate	2.40		S	α,β CH ₂	Jres, TOCSY
46	Threonine	1.31		d	γ CH ₃	JRes
		3.48		dd	α CH	JRes
		3.57		d	α CH	CPMG, JRes
		4.24		m	β CH	JRes
47	Tyrosine	6.87		d	H3, H5	CPMG, JRes, TOCSY
		7.18		d	H2, H6	CPMG, JRes, TOCSY
48	Valine	0.97	19.2	d	CH₃	CPMG, JRes, TOCSY, HSQC
		1.03	20.7	d	CH₃	CPMG, JRes, TOCSY, HSQC
		2.26		m	βCH	JRes, TOCSY
		3.60		d	αCH	CPMG, JRes, TOCSY
49	Urea	5.78		S	CO(NH ₂) ₂	CPMG, TOCSY

PGLYs*: Phosphoglycerides TAGs**: Triacylglycerides NAC***: N-acetyl-glycoprotein

Supplementary Figure 2: O-PLS Model validations by re-sampling 1000 times the model under the null hypothesis. a) OPLS model for the arm A, discriminating W0 versus W2. b) OPLS model for the arm A, discriminating W0 versus W5-6. c) OPLS model for the arm C, discriminating W0 versus W5-6.

Supplementary Figure 3: Sensitivity analysis of O-PLS discrimination between W0 and W2 for the experimental arm A. a) Example of O-PLS model score plot (1+1 components) discriminating W0 vs. W2 for the experimental arm with N = 56, $R^2X = 0.888$, $R^2Y = 0.256$ and $Q^2 = 0.163$; b) Boxplots of R^2Y and Q^2 values obtained for 1,000 O-PLS models (1+1 components) build from random selection of sub-groups of 56 samples (W0: n=28; W2: n=28) from arm A. Boxplots describe the 25th and 75th percentiles (blue), the median (red), the wishers extend to the most extreme data points not considered outliers, and outliers are plotted individually.

Supplementary Table 2: Goodness-of-fit model parameters for PLS models discriminating the histoprognosis features of tumours, stratified by treatment (A, B & C) and collection time of serum samples (W0, W2 & W5-6).

		Treatment A				Treatment B				Treatment C						
		(Temsirolimus + Bevacizumab)				(Sunitinib)				(Interferon-alpha + Bevacizumab)						
	PLS Model	Nb. of samples	Nb. of components	R ² X	R ² Y	Q ²	Nb. of samples	Nb. of components	R ² X	R ² Y	Q²	Nb. of samples	Nb. of components	R ² X	R ² Y	Q²
	Tumor Type	56	2	0.915	0.045	-0.029	26	2	0.867	0.105	-0.127	1	1	1	1	1
	Grade Furhman (I & II vs. III & IV)	43	2	0.913	0.086	-0.113	24	2	0.913	0.184	-0.132	27	2	0.905	0.0579	-0.196
	Interval bewteen diagnosis & metastasis (≤ 12 months vs. > 12 months)	56	2	0.922	0.024	-0.067	25	2	0.91	0.353	0.161	30	2	0.85	0.261	-0.21
wo	PS (0 or 1 vs. 2)	56	2	0.926	0.137	-0.116	1	1	/	1	1	/	/	/	/	/
	MSKKC Classification															
	Poor vs. Intermediate prognosis	35	2	0.91	0.044	-0.113	15	2	0.888	0.29	-0.21	15	2	0.778	0.523	-0.21
	Poor vs. Favorable prognosis	26	2	0.94	0.092	-0.091	11	2	0.789	0.557	0.184	15	2	0.883	0.423	0.181
	Intermediate vs. Favorable prognosis	43	2	0.91	0.045	-0.162	24	2	0.694	0.102	-0.21	22	2	0.871	0.26	0.0153
	Tumor Type	55	2	0.924	0.053	-0.079	22	2	0.868	0.149	-0.2	1	/	/	/	/
	Grade Furhman (I & II vs. III & IV)	42	2	0.929	0.07	-0.128	20	2	0.907	0.0923	-0.21	22	2	0.939	0.104	-0.145
	Interval bewteen diagnosis & metastasis (≤ 12 months vs. > 12 months)	55	2	0.93	0.057	-0.023	21	2	0.769	0.314	-0.21	25	2	0.891	0.224	-0.0191
W2	PS (0 or 1 vs. 2)	55	2	0.9	0.041	-0.045	/	1	/	/	1	/	/	/	1	/
	MSKKC Classification															
	Poor vs. Intermediate prognosis	35	2	0.895	0.117	-0.088	14	2	0.909	0.283	-0.21	11	2	0.96	0.319	-0.0809
	Poor vs. Favorable prognosis	22	2	0.902	0.182	-0.056	7	2	0.934	0.945	0.862	13	2	0.955	0.241	-0.107
	Intermediate vs. Favorable prognosis	45	2	0.934	0.18	0.049	19	2	0.888	0.336	- 0.0722	18	2	0.925	0.149	0.119
	Tumor Type	49	2	0.872	0.163	-0.126	20	2	0.92	0.145	-0.165	/	/	/	/	/
	Grade Furhman (I & II vs. III & IV)	40	2	0.942	0.098	-0.034	19	2	0.916	0.149	-0.167	20	2	0.945	0.151	-0.166
W5-6	Interval bewteen diagnosis & metastasis (≤ 12 months vs. > 12 months)	49	2	0.859	0.158	-0.207	20	2	0.92	0.198	-0.147	22	2	0.898	0.374	-0.0651
	PS (0 or 1 vs. 2)	49	2	0.933	0.064	-0.11	/	1	1	/	/	/	/	/	/	/
	MSKKC Classification															
	Poor vs. Intermediate prognosis	36	2	0.871	0.149	-0.075	9	2	0.947	0.367	-0.145	10	2	0.928	0.7	0.35
	Poor vs. Favorable prognosis	20	2	0.91	0.19	-0.131	10	2	0.881	0.526	-0.108	19	2	0.945	0.235	0.0112
	Intermediate vs. Favorable prognosis	38	2	0.942	0.057	-0.098	17	2	0.842	0.247	-0.21	15	2	0.94	0.353	0.0749

Supplementary Table 3: Goodness-of-fit model parameters for O-PLS models discriminating the experimental arm and the two standard therapies according to the collection time of serum samples (W0, W2 & W5-6).

Collection Time	Model	Sample Number	Orthogonal Component	R ² X	R ² Y	Q ²	CV-ANOVA <i>p</i> -value
W/0	A vs B	82	1	0.916	0.048	-0.018	1
vvo	A vs C	86	1	0.791	0.078	-0.145	1
	B vs C	56	1	0.896	0.076	0.020	0.897
	A vs B	77	2	0.951	0.26	0.144	0.081
W2	A vs C	80	3	0.959	0.35	0.186	0.056
	B vs C	47	1	0.914	0.206	0.173	0.086
W5-6	A vs B	69	2	0.957	0.355	0.188	0.038
	A vs C	71	2	0.956	0.28	0.128	0.171
	B vs C	42	2	0.954	0.453	0.252	0.097

Supplementary Figure 4: O-PLS loadings plot after univariate analysis at W5-6 between arm A and B. Statistically significant signals correspond to coloured spectral regions. Highlighted candidate markers are: 1) Acetate, 2) Acetoacetate, 3) Acetone, 4) Alanine, 5) Cholesterol, 6) 3-hydroxybutyrate, 7) Glucose, 8) Glycerol backbone of PGLYs and TAGs, 9) N-acetylglycoprotein (NAC1), 10) NAC2, 11) Isoleucine, 12) Leucine, 13) Fatty acids (mainly LDL), 14) Fatty acids (mainly VLDL), 15) Fatty acids and 16) Valine. PGLY: Phosphoglycerides; TAGs: Triglycerides.