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Supplementary Figure 1: Orientational patterns created from a linear slit.  a Photograph 

of the straight bow-tie-shaped slit.  The slit is 2mm long, with an opening of 3 °. b-e, 

Streamline plots of the orientational patterns created by using the straight bow-tie-shaped slit, 

for topological charges or defect strengths of 1 (b), 2 (c), 3 (d), and 4 (e).  The patterns were 

calculated using the expression described in the main text, and the nematic liquid crystal 

aligns along the streamlines.   
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Supplementary Figure 2: Disclinations in a system with unequal defect strengths.  a, 

POM image of sample with (s, c) = (1, ) and (s, c) = (2, 0).  The s = 2 defect produces 4 

disclinations, whereas the s = 1 defect produces only two.  The total number of disclinations 

is determined by the defect with the larger strength.  Scale bar: 100 µm. b Calculation of the 

twist angle, showing excellent agreement with the obtained disclination pattern.   
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Supplementary Figure 5: Space-frequency analysis of the colloidal particle chain.  a, 

Cross-sectional TPEM image of colloidal superstructure built using spirally patterned 

substrates with (s, c) = (1, 0).  The figure is identical with Fig. 3c except that the path along 

which the space-frequency analyses were performed is overlaid. b, Space-frequency analysis 

of the colloidal particle chain.  Calculations were performed using the Time-frequency 

Toolkit for Igor Pro software.  Top: TPEM profile along particle chain marked by ‘b’ in 

Supplementary Fig. 4a.  Center: Gaussian Wigner Transform calculated from the particle 

profile.  The width of the Gaussian to smooth the decomposition is set to half of the full data 

width in the time domain, and is set to fulfill the minimum uncertainty condition in the 

frequency domain. Right: Spectral estimate calculated by taking the mean of the Gaussian 

Wigner Transform. c, Space-frequency analysis of the colloidal particle chain along marked 

by ‘c’ in Supplementary Fig. 4a.  For both chains, the inter-particle spacing is approximately 

constant along the chain.   
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Supplementary Figure 6: Frederiks transition in a twisted nematic liquid crystal.  a, 

Dependence of the Frederiks transition threshold Vc on the twist angle , calculated according 

to the equation Vc=((K11 + (K33-2K22)(/)2)/0a)
1/2, where K11, K22 and K33 are splay, twist 

and bend constants, respectively, and a is the dielectric anisotropy1.  Material parameters 

were taken from literature2,3 and are as follows: K11 = 10.5 pN, K22 = 5.4 pN, K33 = 13.8 pN, 

 = 11.5.  b, The difference in the Frederiks transition threshold causes a ‘front’ to initiate 

from regions with the smallest twist angle.  A twist wall results where the fronts meet.   
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