Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substituion of the Cyclometalating Ligand

Kamrul Hasan,^a Ashu K. Bansal,^b Ifor D.W. Samuel,^b Cristina Roldán-Carmona,^{c,d} Henk Bolink^{c*} and Eli Zysman-Colman^{e*}

^a Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1
 ^b Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, UK, KY16 9SS
 ^c Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán 2, 46980 Paterna (Valencia), Spain. <u>henk.bolink@uv.es</u>
 ^d Department of Physical Chemistry and Applied Thermodynamics, Campus Rabanales, Ed. C3, University of Cordoba, 14014, Spain
 ^e Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST, Fax: +44-1334 463808; Tel: +44-1334 463826; E-mail: <u>eli.zysman-colman@st-andrews.ac.uk;</u> URL: http://www.zysman-colman.com

SUPPORTING INFORMATION

Table of contents:

	Pages
¹ H and ¹³ C NMR spectrum of individual compounds and complexes	S2-S23
Synthesis of ligands	S24
Tables of electrochemical and UV-Visible absorption data	S24-S25
UV-vis and emission spectra of individual complexes	S26-S29
Cyclic voltammograms of individual complexes	S30-S33
TDDFT UV-Vis absorption spectra predictions	S34-S37
Performance of LEECs fabricated with 1a – 4b complexes	S38
References	S38

-

Figure S1. ¹H NMR spectrum of 2-(3'-Methoxyphenyl)-5-methylpyridine (3-MeOppy) in CDCl₃

Figure S2.¹H NMR spectrum of 2-(4'-Methoxyphenyl)-5-methylpyridine (4-MeOppy) in CDCl₃

Figure **S3**. ¹H NMR spectrum of **2-(3',4'-Dimethoxyphenyl)-5-methylpyridine (3,4-dMeOppy)** in CDCl₃

Figure S4. ¹³C NMR spectrum of 2-(3',4'-Dimethoxyphenyl)-5-methylpyridine (3,4-dMeOppy) in CDCl₃

Figure S5. ¹H NMR spectrum of 2-(3',4',5'-Trimethoxyphenyl)-5-methylpyridine (3,4,5-tMeOppy) in CDCl₃

Figure S6. ¹³C NMR spectrum of 2-(3',4',5'-Trimethoxyphenyl)-5-methylpyridine (3,4,5-tMeOppy) in CDCl₃

Figure S7. ¹H NMR spectrum of [Ir(3-MeOppy)₂(bpy)](PF₆) 1a in CD₃CN

Figure S8. ¹³C NMR spectrum of [Ir(3-MeOppy)₂(bpy)](PF₆) 1a in CDCl₃

Figure S9. ¹H NMR spectrum of [Ir(3-MeO-ppy)₂(dtbubpy)](PF₆) 1b in CD₃CN

Figure S10. ¹³C NMR spectrum of [Ir(3-MeO-ppy)₂(dtbubpy)](PF₆) 1b in CDCl₃

Figure S11.¹H NMR spectrum of [Ir(4-MeOppy)₂(bpy)](PF₆) 2a in CD₃CN

Figure S12. ¹³C NMR spectrum of [Ir(4-MeOppy)₂(bpy)](PF₆) 2a in CDCl₃

Figure S13. ¹H NMR spectrum of [Ir(4-MeOppy)₂(dtbubpy)](PF₆) 2b in CD₃CN

Figure S14. ¹³C NMR spectrum of [Ir(4-MeOppy)₂(dtbubpy)](PF₆) 2b in CDCl₃

Figure S15. ¹H NMR spectrum of [Ir(3,4-dMeOppy)₂(bpy)](PF₆) 3a in CD₃CN

Figure S16. ¹³C NMR spectrum of [Ir(3,4-dMeOppy)₂(bpy)](PF₆) 3a in CD₃CN

Figure S17. ¹H NMR spectrum of [Ir(3,4-dMeOppy)₂(dtbubpy)](PF₆) 3b in CD₃CN

Figure S18. ¹³C NMR spectrum of [Ir(3,4-dMeOppy)₂(dtbubpy)](PF₆) 3b in CDCl₃

Figure S19. ¹H NMR spectrum of [Ir(3,4,5-tMeOppy)₂(bpy)](PF₆) 4a in CD₃CN

Figure S20. ¹³C NMR spectrum of [Ir(3,4,5-tMeOppy)₂(bpy)](PF₆) 4a in CDCl₃

Figure S21. ¹H NMR spectrum of [Ir(3,4,5-tMeOppy)₂(dtbubpy)](PF₆) 4b in CD₃CN

Figure S22. ¹³C NMR spectrum of [Ir(3,4,5-tMeOppy)₂(dtbubpy)](PF₆) 4b in CDCl₃

Figure **S23**. Synthesis of C^N ligands. Reagents and conditions: ^{*a*} i. toluene/THF (4:1 v/v), 1.2 equiv. *n*-BuLi, -78 °C, N₂; ii. 1 N HCl, -20 °C, RT, 0.5 h. ^{*b*} 1,4-dioxane/H₂O (4:1 v/v), 3.0 equiv. K₂CO₃, 5 mol% Pd(PPh₃)₄, N₂, 105 °C, 19 h.

	1:200	1	E	A E	E	A E	A E
complex	ligands		$E_{1/2,\text{OX}}$	$\Delta E_{\rm p}$	$E_{1/2,\text{red}}$	$\Delta E_{\rm p}$	ΔE
	C^N	N^N	V	mV	V	mV	V
1a	3-MeOppy	bpy	0.95	76	-1.40	69	2.38
1b	3-МеОрру	d <i>t</i> Bubpy	0.90	75	-1.52	70	2.49
2a	4-MeOppy	bpy	1.15 ^b	-	-1.42	70	2.61
2b	4-MeOppy	d <i>t</i> Bubpy	1.13 ^b	-	-1.49	70	2.63
3 a	3,4-dMeOppy	bpy	0.84	75	-1.41	71	2.27
3b	3,4-dMeOppy	d <i>t</i> Bubpy	0.78	69	-1.52	67	2.35
4 a	3,4,5-tMeOppy	bpy	0.87	75	-1.40	74	2.30
4 b	3,4,5-tMeOppy	d <i>t</i> Bubpy	0.84	76	-1.50	70	2.42

Table S1. Relevant electrochemical data for complexes 1a-4b.^a

^{*a*} CV traces recorded in MeCN solution with 0.1 M (n-Bu₄N)PF₆ at 298 K at 50 mVs⁻¹. Values are in V vs. SCE (Fc/Fc⁺ vs. SCE = 0.38 V).¹ A non-aqueous Ag/Ag⁺ electrode (silver wire in a solution of 0.1 M AgNO₃ in MeCN) was used as the pseudoreference electrode; a glassy-carbon electrode was used for the working electrode and a Pt electrode was used as the counter electrode. ^{*b*} Irreversible and E_{pa} reported for oxidation peak potentials.

Complex	$\lambda_{abs} / \text{ nm} (\epsilon / 10^4 \text{ M}^{-1} \text{ cm}^{-1})^a$	$E_{0,0}$ (nm)
1a	265 (8.37), 311 (3.14), 338 (1.61), 425 (0.70)	498
1b	263 (10.61), 308 (4.18), 338 (2.09), 425(0.80)	492
2a	255 (5.32), 277 (6.78), 309 (3.71), 390 (0.86), 450* (0.11)	464
2b	250 (6.62), 278 (8.88), 310 (3.75), 390 (0.82), 450* (0.09)	471
3 a	279 (5.72), 308 (2.47), 340 (1.57), 419 (0.74)	472
3b	279 (6.76), 312 (2.75), 343 (1.78), 424 (0.78)	480
4 a	244 (6.22), 275 (6.68), 310 (4.21), 330 (2.72), 385 (0.93)	460
4b	248 (8.81), 275 (9.45), 310 (5.89), 331 (3.76), 395 (1.14)	473

Table S2. Relevant spectroscopic data for complex 1a-4b.

^{*a*} Absorption spectra recorded in aerated MeCN at 298 K. Molar absorptivities (e) determined over a concentration range of 6.88 x 10^{-1} to $3.19 \times 10^2 \,\mu$ M wherein absorbance values obey the Beer-Lambert law. ^{*b*} $E_{0,0}$ was estimated from the onset of the absorption spectrum at approximately 10% intensity. * Shoulder.

Figure S23. Normalized absorption and emission spectra of [Ir(3-MeOppy)₂(bpy)](PF₆) 1a recorded in MeCN at 298 K

Figure S24. Normalized absorption and emission spectra of [Ir(3-MeO-ppy)₂(d/bubpy)](PF₆) 1b recorded in MeCN at 298 K

Figure **S25**. Normalized absorption and emission spectra of [Ir(4-MeOppy)₂(bpy)](PF₆) 2a recorded in MeCN at 298 K

Figure **S26**. Normalized absorption and emission spectra of [**Ir(4-MeOppy)**₂(**d***t***bubpy**)](**PF**₆) **2b** recorded in MeCN at 298

Figure S27. Normalized absorption and emission spectra of [Ir(3,4-dMeOppy)₂(bpy)](PF₆) 3a recorded in MeCN at 298 K

Figure **S28**. Normalized absorption and emission spectra [Ir(3,4-dMeOppy)₂(d*t*bubpy)](PF₆) 3b recorded in MeCN at 298 K

Figure **S29**. Normalized absorption and emission spectra of [Ir(3,4,5-tMeOppy)₂(bpy)](PF₆) 4a recorded in MeCN at 298 K

Figure **S30**. Normalized absorption and emission spectra of [Ir(3,4,5-tMeOppy)₂(dtbubpy)](PF₆) 4b recorded in MECNat 298 K

Figure S31. Cyclic voltammogram of [Ir(3-MeOppy)2(bpy)](PF6) 1a recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S32. Cyclic voltammogram of [Ir(3-MeO-ppy)2(dtbubpy)](PF6) 1b recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S33. Cyclic voltammogram of [Ir(4-MeOppy)2(bpy)](PF6) 2a recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S34. Cyclic voltammogram of [Ir(4-MeOppy)₂(dtbubpy)](PF₆) 2b recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S35. Cyclic voltammogram of [Ir(3,4-dMeOppy)2(bpy)](PF6) 3a recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S36. Cyclic voltammogram of [Ir(3,4-dMeOppy)₂(dtbubpy)](PF₆) 3b recorded at 298 K at

50 mV/s in MeCN with 0.1 M (*n*Bu₄N)PF₆

Figure S37. Cyclic voltammogram of [Ir(3,4,5-tMeOppy)2(bpy)](PF6) 4a recorded at 298 K at 50

mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure S38. Cyclic voltammogram of [Ir(3,4,5-tMeOppy)2(dtbubpy)](PF6) 4b recorded at 298 K at

50 mV/s in MeCN with 0.1 M (nBu₄N)PF₆

Figure **S39**. Experimental (red) and calculated UV-Vis spectrum (blue – fwhm = 1000 cm^{-1}) obtained from TDDFT calculations with the corresp onding vertical excitations (green) for **1a**.

Figure **S40**. Experimental (red) and calculated UV-Vis spectrum (blue – fwhm = 1000 cm^{-1}) obtained from TDDFT calculations with the corresponding vertical excitations (green) for **2a**.

Figure S41. Experimental (red) and calculated UV-Vis spectrum (blue – fwhm = 1000 cm^{-1}) obtained from TDDFT calculations with the corresponding vertical excitations (green) for **3a**.

Figure S42. Experimental (red) and calculated UV-Vis spectrum (blue – fwhm = 1000 cm^{-1}) obtained from TDDFT calculations with the corresponding vertical excitations (green) for 4a.

	State	λ /nm	E/eV	Assignment [f]	Nature
1 a	T_1	550.7	2.25	H→L (98%) [0]	³ MLCT/ ³ LLCT
1b	T_1	513.4	2.41	H→L (98%) [0]	³ MLCT/ ³ LLCT
2a	T_1	483.8	2.56	H→L (91%) [0]	³ MLCT/ ³ LLCT
2b	T_1	454.7	2.73	H→L (91%) [0]	³ MLCT/ ³ LLCT
3a	T_1	499.6	2.48	H→L (97%) [0]	³ MLCT/ ³ LLCT

Table S3. Triplet state energies obtained by TDDFT.

3b	T_1	469.0	2.64	H→L (97%)	³ MLCT/ ³ LLCT
4a	T_1	524.1	2.37	H→L (97%)	³ MLCT/ ³ LLCT
4b	T_1	491.0	2.53	H→L (97%)	³ MLCT/ ³ LLCT

The most important parameters for the **1b** - **4b** based LEECs are shown in Table **S4**. The molecule **1a** did not work correctly and no electroluminescence data can be provided.

	t _{max}	Luminance _{max}	$t_{1/2}$	Efficacy	Power Efficiency	EQE	$\text{CIE}_{x,y}$
	$(s)^a$	$(cd m^{-2})$	$(s)^b$	$(cd A^{-1})$	$(lm W^{-1})$	$(\%)^{c}$	
1 a	-	-	-	-	-	-	-
1b	17	7.4	60	6.7 10 ⁻⁴	0.037	0.0005	0.56, 0.44
2a	3	53.1	30	38 10-4	0.0144	0.002	0.49, 0.50
2b	7	4.6	42.7	6.3 10 ⁻⁴	0.0004	0.0003	0.46, 0.52
3a	30	3.3	100	4.5 10 ⁻⁴	0.0002	0.0004	0.56, 0.44
3b	14	7.34	233	8.6 10 ⁻⁴	0.0005	0.001	0.57, 0.43
4a	8h	21	16h	0.029	0.007	0.034	0.63, 0.37
4b	1.1h	18	2h	0.050	0.013	0.050	0.61, 0.38

Table S4. Performance of LEEC devices driven at a constant voltage of 4V.

^{*a*} Defined as the time to reach the peak luminance. ^{*b*} Time to reach half of the maximum luminance. ^{*c*} External Quantum Efficiency.

References

1 Pavlishchuk, V. V. & Addison, A. W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. *Inorg. Chim. Acta* **298**, 97-102, doi:10.1016/s0020-1693(99)00407-7 (2000).