Supplementary Material

Figure S1: The effect of different incubation temperatures (°C) on antimicrobial susceptibility testing for *mecC*-MRSA strains (n=10). Penicillin (PG) and cefoxitin (FOX) disc diffusion was performed on Iso-Sensitest agar (ISA) with or without 15 μ g/ml clavulanic acid.

Figure S2: Effect of PBP2c Val546IIe substitution. (A) Comparison of disc diffusion results for penicillin (PG) (red bars) and cefoxitin (FOX) (blue bars) of strains RN4220, LGA251 Δ mecC Δ blaZ and 02.5099.D Δ mecC Δ blaZ carrying plasmid borne copies of wildtype mecC and mecC^{Val546IIe}. C1 and C2 denote clone 1 and clone 2, respectively. (B) Comparison of minimum inhibitory concentrations for cefoxitin (FOX) of wildtype strain and strains RN4220, LGA251 Δ mecC Δ blaZ and 02.5099.D Δ mecC Δ blaZ carrying plasmid borne copies of wildtype mecC and mecC^{Val546IIe}. C1 and C2 denote concentrations for cefoxitin (FOX) of wildtype strain and strains RN4220, LGA251 Δ mecC Δ blaZ and 02.5099.D Δ mecC Δ blaZ carrying plasmid borne copies of wildtype mecC and mecC^{Val546Iso}. C1 and C2 denote clone 1 and clone 2, respectively.

Figure S3: Biological repeats of experimental treatment of *Galleria mellonella* infected by *mecC*-MRSA strains: (A) LGA251 (B) 02.5099.D (C) 71277. Ten larvae in each group were experimentally infected and then treated at 2, 24 and 48 hours with Vancomycin (50 mg/kg / 6.73×10^{-9} mol), Penicillin (20 mg/kg / 1.12×10^{-8} mol), Clavulanic acid (20 mg/kg / 1.69×10^{-8} mol), Penicillin / Clavulanic acid, Cefoxitin (40 mg/kg / 1.78×10^{-8} mol), and PBS alone. Fig. shows a representative image of a single experiment.

Figure S4: Structural view of PBP2a (A) in context of fold (B) close-up. Residues numbered first PBP2c and PBP2a second. SxxK motif in red and KT/SG motif in blue. Produced using UCSF Chimera (http://www.cgl.ucsf.edu/chimera/); from PDB code 1VQQ (PBP2a).

Table S3: Comparison of minimum inhibitory concentration of penicillin (PG) and cefoxitin (FOX) after *in vitro* selection for penicillin-resistance in strains lacking the SCC*mec* type XI encoded *blaZ*. C1, C2, C3 indicate multiple individual colonies tested.

Strains	PG μg/ml	FOX μg/ml
LGA251∆ <i>blaZ</i>	0.015	8
LGA251∆ <i>blaZ-</i> D9-C1	8	128
LGA251∆ <i>blaZ-</i> D9-C2	8	128
LGA251∆ <i>blaZ</i> -D9-C3	8	128
02.5099.D∆ <i>blaZ</i>	0.0625	8
02.5099.D∆ <i>blaZ</i> -D13-C1	16	128
02.5099.D∆ <i>blaZ</i> -D13-C2	16	>128
02.5099.D∆ <i>blaZ</i> -D13-C3	16	>128

Note for the table: 20 hours, at 35°C. MIC breakpoint for PG is 0.12 μ g/ml; for FOX is 4 μ g/ml. PG concentration range is 0.03125-128 μ g/ml. FOX concentration range is 1-128 μ g/ml. D9 = day 9 and D13 = day 13.

Bacterial strains, plasmids or primers	Description	Reference
<i>E. coli</i> strains		
DC10B	Δ <i>dcm</i> in the DH10B background; Dam methylation only	(1)
S. aureus strains		
RN4220	Derived from NCTC8325-4, selected for transformability with DNA from <i>E. coli</i>	(2)
RN4220(pXB01mecC)	RN4220 with wildtype mecC	This study
RN4220(pXB01 <i>mecCVal546Iso</i>)	RN4220 with mutated mecC	This study
LGA251	ST425, mecC reference strain	(3)
LGA251ΔmecC	LGA251 with mecC deletion	This study
LGA251 <i>∆blaZ</i>	LGA251 with blaZ deletion	This study
LGA251Δ <i>mecC</i> ΔblaZ	LGA251 with mecC and blaZ deletion	This study
LGA251∆mecC (pXB01)	LGA251Δ <i>mecC</i> with empty plasmid pXB01	This study
LGA251∆ <i>blaZ</i> (pXB01)	LGA251 <i>ΔblaZ</i> with empty plasmid pXB01	This study
LGA251Δ <i>mecC</i> Δ <i>blaZ</i> (pXB01)	LGA251Δ <i>mecC</i> Δ <i>blaZ</i> with empty plasmid pXB01	This study
LGA251∆ <i>mecC</i> (pXB01- <i>mecC</i>)	LGA251Δ <i>mecC</i> complemented with pXB01- <i>mecC</i>	This study
LGA251∆ <i>blaZ</i> (pXB01- <i>blaZ</i>)	LGA251∆ <i>blaZ</i> complemented with pXB01- <i>blaZ</i>	This study
LGA251∆ <i>mecC∆blaZ</i> (pXB01- <i>mecC</i>)	LGA251∆ <i>mecC∆blaZ</i> complemented with pXB01- <i>mecC</i>	This study
LGA251∆ <i>mecC∆blaZ</i> (pXB01- <i>blaZ</i>)	LGA251∆ <i>mecC∆blaZ</i> complemented with pXB01- <i>blaZ</i>	This study
02.5099.D	CC130, mecC clinical isolate	(3)
02.5099.DΔ <i>mecC</i> (pXB01)	02.5099.D with mecC deletion	This study
02.5099.D∆ <i>blaZ</i> (pXB01)	02.5099.D with <i>blaZ</i> deletion	This study
02.5099.DΔ <i>mecC</i> Δ <i>blaZ</i> (pXB01)	02.5099.D with mecC and blaZ deletion	This study
02.5099.D∆ <i>mecC</i>	02.5099.D∆mecC with empty plasmid pXB01	This study
02.5099.D∆ <i>blaZ</i>	02.5099.D∆ <i>blaZ</i> with empty plasmid pXB01	This study
02.5099.DΔmecCΔblaZ	02.5099.DΔ <i>mecCΔblaZ</i> with empty plasmid pXB01	This study
02.5099.DΔ <i>mecC</i> (pXB01- <i>mecC</i>)	02.5099.D∆ <i>mecC</i> complemented with pXB01- <i>mecC</i>	This study
02.5099.D∆ <i>blaZ</i> (pXB01- <i>blaZ</i>)	02.5099.DΔ <i>blaZ</i> complemented with pXB01- <i>blaZ</i>	This study
02.5099.D∆ <i>mecC∆blaZ</i> (pXB01- <i>mecC</i>)	02.5099.D∆ <i>mecC∆blaZ</i> complemented with pXB01- <i>mecC</i>	This study
02.5099.DΔ <i>mecC</i> Δ <i>blaZ</i> (pXB01- <i>blaZ</i>)	02.5099.DΔ <i>mecC</i> Δ <i>blaZ</i> complemented with pXB01- <i>blaZ</i>	This study
Plasmids		
pRMC2	<i>E. coli - S. aureus</i> shuttle vector, Amp', Cm'	(4)
pXB01	<i>E. coli</i> - <i>S. aureus</i> shuttle vector pRMC2 with <i>bla</i> deletion; Cm ^r	This study
pXB01- <i>mecC</i>	pXB01 with mecC gene from LGA251	This study
pXB01- <i>mecC^{vai546lie}</i>	pXB01 with <i>mecC</i> gene having a G to A mutation at position 1636 producing a Val546IIe substitution	This study
pXB01- <i>blaZ</i>	pXB01 with <i>blaZ</i> gene from LGA251	This study
pIMAY	pIMC5 with tetracycline inducible <i>secY</i> antisense from pKOR1; Cm ^r	(1)
pIMAY∆ <i>mecC</i>	Modified pIMAY for deleting <i>mecC</i> gene, encompassing the entire gene, insert amplified from LGA251	This study
pIMAYΔ <i>blaZ</i>	Modified pIMAY for deleting <i>blaZ</i> gene, encompassing the entire gene, insert amplified from LGA251	This study
pIMAY∆mecC∆blaZ	Modified pIMAY for deleting <i>blaZ</i> gene, encompassing the entire gene, insert amplified from LGA251Δ <i>mecC</i>	This study
Primers	Sequence (5'-3') restriction site underlined	Restriction site
de-bla-F	ATATATATGCGGCCGCCTGTCAGACCAAGTTTACTC	Notl
de-bla-R	ATGCGCATGCGGCCGCACTCTTCCTTTTCAATATTA	Notl
ΔmecC_A	ATCG <u>GGTACC</u> TAATATGAATGAGTTCATGGC	Kpnl
Δ <i>mecC</i> _B	CTCTTCCTCCTTTTGTACTAC	·
ΔmecC_C	TAGTACAAAAGGAGGAAGAGTTCGAATACTTCTTTG ACTTGG	
ΔmecC D	ATCGGAGCTCGTATCGCCACTTTTATTTTTG	SacI
∆ <i>mecC</i> outF	GCTAAATGTAATGCTGGATTGAACC	
AmecC outR	TCTTGTCCATCTGGATAAACAAACG	

Table S5: Bacterial strains, plasmids and primers used in this study.

ΔblaZ_A	ATAT <u>GGTACC</u> AAATATCCCGAGTGATTATCC	Kpnl
ΔblaZ_B	CCTACGTTAGCACCATATTTTTTTCG	
ΔblaZ_C	AAATATGGTGCTAACGTAGGGTAAGTGAGGTTGCTG	
	AAATTGTACT	
ΔblaZ_D	ATAT <u>GAGCTC</u> CATCATAGAAGTTCCAGACG	Sacl
Δ <i>blaZ</i> _outF	TGCCCGCATTGCATTAGCATTAGGA	
Δ <i>blaZ</i> _outR	AAATATTGGAAGCAAGCCATAGCAG	
∆blaZ∆mecC_A	ATAT <u>GGTACC</u> GGAGATCTAATAGACAAGTC	Kpnl
∆ <i>blaZ</i> ∆ <i>mecC</i> _outF	GACCATTGGATTCTCTACTTCATCT	
<i>cat</i> up	GGATTTTTCGCTACGCTCAAA	
<i>cat</i> down	AAAGTACAGTCGGCATTATCTCA	
IM151	TACATGTCAAGAATAAACTGCCAAAGC	(1)
IM152	AATACCTGTGACGGAAGATCACTTCG	(1)
<i>blaZ</i> -F- KpnI	CGCG <u>GGTACC</u> TATATAGGAGGAATAAAATTG	Kpnl
blaZ-R-Sacl	GCGC <u>GAGCTC</u> TTACTCATTAATATTTTTAG	Sacl
mecC-F-KpnI	CGCG <u>GGTACC</u> CAAAAGGAGGAAGAGATG	Kpnl
mecC-R-Sacl	GCGC <u>GAGCTC</u> TTCGAATTACTGATCTAT	Sacl
mecCf	GTTCACACCTCACTTCTTAAC	
mecCr	GTAATCTTTGTGGAAACGC	
mecCm	GCCGTGTTTATCCATTGAAC	

References:

- 1. **Monk, I. R., I. M. Shah, M. Xu, M. W. Tan, and T. J. Foster.** 2012. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio **3**.
- 2. **Novick, R.** 1967. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology **33:**155-66.
- Garcia-Alvarez, L., M. T. Holden, H. Lindsay, C. R. Webb, D. F. Brown, M. D. Curran, E. Walpole, K. Brooks, D. J. Pickard, C. Teale, J. Parkhill, S. D. Bentley, G. F. Edwards, E. K. Girvan, A. M. Kearns, B. Pichon, R. L. Hill, A. R. Larsen, R. L. Skov, S. J. Peacock, D. J. Maskell, and M. A. Holmes. 2011. Meticillin-resistant *Staphylococcus aureus* with a novel *mecA* homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595-603.
- 4. **Corrigan, R. M., and T. J. Foster.** 2009. An improved tetracyclineinducible expression vector for Staphylococcus aureus. Plasmid **61:**126-9.