Stem Cell Reports, Volume 5 Supplemental Information

# Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro

Rouzanna Istvánffy, Baiba Vilne, Christina Schreck, Franziska Ruf, Charlotta Pagel, Sandra Grziwok, Lynette Henkel, Olivia Prazeres da Costa, Johannes Berndt, Volker Stümpflen, Katharina S. Götze, Matthias Schiemann, Christian Peschel, Hans-Werner Mewes, and Robert A.J. Oostendorp

### Supplemental experimental procedures

### Construction of a Ctgf-signaling network.

Computational modeling allows the formulation of a systems-level hypothesis and proposes targeted experiments. However, for feasible experimental approaches, the size of a constructed network should be limited, as computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes (Bauer-Mehren et al., 2009; Gonzalez et al., 2006; Singhania et al., 2011; Yener et al., 2008). The construction of models is best approached in a bottom-up directionality, where a small number of "seed-genes" are first extracted from within the experimental data and then used to define the network (Schlitt and Brazma, 2007).

For construction of the Ctgf signaling network, we first selected a list of "seed genes" from the CTGF interactome (Table S5) according to the following criteria: (i) hematopoiesis-associated genes (Table S4); (ii) genes involved in cell proliferation, GO:BP, GO:0008283-cell proliferation p: 2.9e-61, (106 PPIs, not shown). We obtained 12 genes which satisfied both criteria:

| #  | Gene Symbol | RT-qPCR      |
|----|-------------|--------------|
| 1  | Ccnd1       | $\Downarrow$ |
| 2  | Cdkn1b      | €            |
| 3  | Foxo1       | €            |
| 4  | Foxo3       |              |
| 5  | Lef1        | $\Downarrow$ |
| 6  | Stat1       | $\Downarrow$ |
| 7  | Aqp         |              |
| 8  | Thbs1       |              |
| 9  | Serpine1    |              |
| 10 | Nfatc2      |              |
| 11 | Cebpe       | ſ            |
| 12 | ltgb3       | €            |

From these, we first identified Ctgf, and the Ctgf receptor sub-unit Itgb3 as our starting genes/proteins (ligands or transmembrane receptors) and as our terminal nodes, we defined two well known cell cycle regulators G0/G1-specific Cyclin D1 (*Ccnd1*) and the cyclin-dependent kinase inhibitor *Cdkn1b*, as well as two transcription factors (TFs) Forkhead box protein O1 (*Foxo1*) and Lymphoid enhancer-binding factor1 (*Lef1*).

Next, we performed EXCERBT literature search (Barnickel et al., 2009; Mewes et al., 2011) to identify the pathways and major molecular players relaying a signal from our start genes/proteins to the terminal nodes. This analysis extended the number of Ctgf receptors to *Lrp6*, *Igf2R*, *Egfr*, and *Tgfbr1*. Important to note, similarly as already described (Saez-Rodriguez et al., 2007), we also only considered local interactions (e.g., a kinase phosphorylates its substrate). At the same time, in order to keep the size of the network meaningful for experimental validation, parts of it were simplified: for example, the MAPK cascade, in which a series of nodes and edges impinge only on each other, was reduced to FAK  $\rightarrow$  (activates)! ERK1/2. The complete network can be inferred from **Table S6**.

### **Supplementary Figures**



**Figure S1 (related to Figure 1).** *LSK cells before and after co-culture, including gene expression validation.* (A) LSK cells shown prior to sort and (B) after cell sorting. LSK cells were plated on UG26-1B6 stromal cells and co-cultured for (C) one day: d1 cc, two days: d2 cc, or three days: d3 cc. Relative gene expression of co-cultured (d1 cc) with mono-cultured (d0) UG26-1B6 cells ((D) up-regulated and (E) down-regulated genes)). The microarray (MOE430.2, black bars) and RT-qPCR (grey bars) results presented as fold change of mRNA expression levels on log2 scale (log2FC). Data presents results of 3 to 5 independent samples.



# Figure S2 (related to Figure 2). The enrichment of LSKs and LT-LSKs cells after lineage depletion of whole bone marrow.

(A) Representative FACS plots of the whole BM and lineage depleted BM with gating strategy of LSKs and CD34<sup>-</sup> CD150<sup>+</sup> (LT)-LSKs. (B) Graphs representing level of enrichment of Lin<sup>-</sup>, LSK and LT-LSK cells after lineage separation. Data shown are the results of two independent representative experiments (n=9).



Figure S3 (related to Figure 3). Apoptosis in LSK cells cultured on pLKO.1 and shCtgf stroma. (A) Experimental design:  $1\times10^3$  LSK cells co-cultured for one day (d1 cc) on shCtgf, pLKO.1 stromal cells were harvested and stained for CD45, lineage markers, Kit, Sca-1, and AnnexinV. (B) Histogram of AnnexinV stain in CD45<sup>+</sup> cells (blue line – pLKO.1; red line – shCtgf). (C) The representative FACS plots of the AnnexinV stain in LSKs. Data represents results of two independent experiments.



**Figure S4. Sorting of CD34<sup>+</sup> and CD34<sup>-</sup> SLAM cells for co-cultures and single cell cultures (related to Figure 4).** (A) Representative FACS plots of Lin<sup>-</sup> cells stained for SLAM marker (CD48, CD150) and sorted after CD34 expression as CD34<sup>+</sup> SLAM cells and CD34<sup>-</sup> SLAM cells. (B) Experimental design: 300 sorted CD34<sup>-</sup> SLAM cells were co-cultured on pLKO.1 and shCtgf stromal cells for one week in LT-medium and were further harvested and analysed by FACS. (C) Cobblestone area forming cells (CAFCs) observed under the light microscope (X5). (D) Total number of CAFCs in pLKO.1 and shCtgf co-cultures. (E) Representative FACS plots of co-cultures stained for LSKs. (F) Percentage of LSKs in one-week co-cultures. Data represents results of two (B-F) or three (G, H) independent experiments.



**Figure S5 (related to Figure 5). Experimental validation of the Ctgf interaction model**. (A) Shown are MAS5-normalized values for the TGFBR, FGFR, IGFR, EGF and ITGAV/ITGB3 receptor families in sorted in three independent analyses of 15.000 sorted LSK cells. (B) Relative expression of selected genes was detected by RT-qPCR from LSK co-cultured for one day (d1 cc) on shCtgf and pLKO.1 stromal cells in three or four independent experiments. (C) Shown are the representative pictures of LSK cells co-cultured on shCtgf and pLKO.1 stromal cells for one day (1d cc) and stained with respective antibodies. DAPI was used as a counter stain. Scale bars represent 5 µm. Each dot represents relative pixel number in an individual cell counted with ImageJ software from cells analysed on a fluorescent microscope. The total number of dots represent all cells measured in three independent experiments.



Figure S6 (related to Figure6). Expression of TGFBR in SLAM cells and distribution of senescenceassociated  $\gamma$ H2A.X foci in LSKs from d1 and d7 co-cultures (A) Expression of TGFR1 in CD34<sup>-</sup> and CD34<sup>+</sup> SLAM cells. (B) TGFBR1 expression in CD34<sup>-</sup> SLAM cells after d1 co-culturing on pLKO.1 and shCtgf stromal cell. (C) Experimental design:  $5x10^3$  lineage depleted cells were cultured on pLKO.1 and shCtgf stroma for one (d1) and seven (d7) days. After co-culture, LSKs were sorted from trypsin-detached cultures and analysed for  $\gamma$ H2A.X expression. (D) Representative FACS plots of sorted d1 and d7 co-cultures. The immunofluorescence pictures represents expression of  $\gamma$ H2A.X in sorted LSKs. DAPI was used as a counter stain. One experiment was performed with three technical replicates. Each dot represents the number of foci counted in individual cells analysed on fluorescent microscope. Scale bars represent 5 µm.

### Table S7

| Tanat    |                           | Too   | 0.00/ | PCR     |
|----------|---------------------------|-------|-------|---------|
| Target   | Sequence 5-3              | IM    | GC%   | product |
| Adam10-F | CCTGGGAAGCAGTGCAGTCCGA    | 60 75 | 63 64 | 140     |
| Adam10-R | GCTGGGCAAAGGGCTGTGAAGC    | 61.06 | 63.64 | 140     |
| Atf4-F   |                           | 67.58 | 66 67 | 100     |
| Atf4-R   |                           | 66.58 | 56.00 | 100     |
| Axin2-F  | TGGGGAGCAGTTTTGTGGCAGCA   | 61.35 | 56.52 | 116     |
| Axin2-R  | CCCCCGCTGCACTGGACATCC     | 61 77 | 71 43 | 116     |
| Brca1-F  | ATGCTGCAGCTGTGTGGGGGCT    | 67.37 | 61.90 | 100     |
| Brca1-R  | TCCAGGCGCTTGGCTGCACG      | 68.45 | 70.00 | 100     |
| Ccnd1-F  | GCGTACCCTGACACCAATCT      | 59.75 | 55.00 | 329     |
| Ccnd1-R  | CACAACTTCTCGGCAGTCAA      | 58.42 | 50.00 | 329     |
| Ccne1-F  | GCAGCGAGCAGGAGACAGA       | 62.00 | 63.16 | 66      |
| Ccne1-R  | GCTGCTTCCACACCACTGTCTT    | 63.28 | 54.55 | 66      |
| Ccne2-F  | CGCAGCCGTTTACAAGCTAAG     | 60.20 | 52.38 | 65      |
| Ccne2-R  | TGGGTTTCTTGCGGAGAGTCT     | 61.38 | 52.38 | 65      |
| Cdc25a-F | AAACCTTGCCGATCGTTGCGGG    | 60.55 | 59.09 | 146     |
| Cdc25a-R | CCTTCACAGGGCTGGGCACAC     | 59.91 | 66.67 | 146     |
| Cdk2-F   | GCCTTTGGAGTCCCTGTCCGAACT  | 60.41 | 58.33 | 152     |
| Cdk2-R   | GCCCTGCGGGTCACCATTTCAG    | 60.30 | 63.64 | 152     |
| Cdkn1a-F | CGGCAGGAGGCATATCTAGG      | 59.47 | 60.00 | 145     |
| Cdkn1a-R | GACCCACCCTAGACCCACAA      | 60.84 | 60.00 | 145     |
| Cdkn1b-F | GGCCCGGTCAATCATGAA        | 57.34 | 55.56 | 77      |
| Cdkn1b-R | TTGCGCTGACTCGCTTCTTC      | 61.28 | 55.00 | 77      |
| Cebpb-F  | TCGGGACTTGATGCAATCCGGATCA | 66.13 | 52.00 | 101     |
| Cebpb-R  | AGTGATTACTCAGGGCCCGGCTG   | 66.34 | 60.87 | 101     |
| Cited2-F | TGGGCCAAACCGTTCTGGATCAGG  | 67.02 | 58.33 | 112     |
| Cited2-R | TGCCACTGACGACATTCCACACCC  | 67.17 | 58.33 | 112     |
| Ctaf-F4  | GCGAGAGCTGAGCATGTGTCCTCC  | 61.38 | 62.50 | 148     |
| Ctaf-R4  | ACTTGCCACAAGCTGTCCAGTCT   | 58.44 | 52.17 | 148     |
| Ctsg-F   | GACCAAATGTGCGCCAATCGC     | 57.93 | 57.14 | 104     |
| Ctsg-R   | CCACCAGAATCACCCCTGAAGGCA  | 60.41 | 58.33 | 104     |
| Cxcl12-F | GCCCTTCAGATTGTTGCACGGC    | 59.24 | 59.09 | 139     |
| Cxcl12-R | TCGGGCGTCTGACTCACACCT     | 59.58 | 61.90 | 139     |
| Cxcr4-F  | GAGGCGTTTGGTGCTCCGGT      | 59.63 | 65.00 | 147     |
| Cxcr4-R  | CCCGGAAGCAGGGTTCCTTGT     | 58.69 | 61.90 | 147     |
| Ddit3-F  | GTACCCAGCACCATCGCGCCA     | 67.63 | 66.67 | 104     |
| Ddit3-R  | TGTGCAAGCCGAGCCCTCTCCT    | 68.19 | 63.64 | 104     |
| Dnmt3a-F | AGGAAAACGCCGGAGGGCTTGG    | 67.57 | 63.64 | 124     |
| Dnmt3a-R | AGGACCGGAGGGGAAGAAGGGGA   | 68.34 | 65.22 | 124     |
| E2f1-F   | GGGGAGGGTACGTGAGGGCCT     | 67.53 | 71.43 | 103     |
| E2f1-R   | ACTGGAGGGTGGGGAGGACAGC    | 67.72 | 68.18 | 103     |
| Eed-F    | TGGCAAAAGATGCTTGCATTGGGCA | 66.70 | 48.00 | 133     |
| Eed-R    | TGGTTTGTCGAATAGCCGCGCCA   | 67.48 | 56.52 | 133     |
| Ep300-F  | GCCGAGAATGTGGTGGAACCCG    | 65.91 | 63.64 | 103     |
| Ep300-R  | GTGAACCAAAATCTGTGCCATCGCT | 64.49 | 48.00 | 103     |
| Esrra-F  | AGGACCCAGGAAGACAGCCCCAG   | 67.68 | 65.22 | 128     |
| Esrra-R  | AGAGAGTGGCCACAGCGGGGA     | 67.70 | 66.67 | 128     |
| Ezh2-F   | CTGTGAGCTCATTGCGCGGGACT   | 67.51 | 60.87 | 107     |
| Ezh2-R   | AGGCACCGAGGCGACTGCATTC    | 67.58 | 63.64 | 107     |
| Fbn1-F   | AGGCCCCCTGCAGTTACGGT      | 59.82 | 65.00 | 118     |
| Fbn1-R   | CCTCGGCCCATGCCCATTCC      | 59.83 | 70.00 | 118     |
| Fos-F    | GGCAGCCGGCATCCAGACGT      | 61.84 | 70.00 | 132     |
| Fos-R    | TCCTTGAGGCCCACAGCCTGGT    | 60.99 | 66.67 | 132     |
| Foxo1-F  | GGCCATCGAGAGCTCAGCCG      | 65.38 | 70.00 | 125     |
| Foxo1-R  | TTGAATTCTTCCAGCCCGCCGA    | 64.80 | 54.55 | 125     |

|                    |                            |       |        | PCR     |
|--------------------|----------------------------|-------|--------|---------|
| Target             | Sequence 5'-3'             | Tm    | GC%    | product |
|                    |                            |       |        | size    |
| Fzd7-F             | TCAGCCATATCACGGCGAGA       | 61.11 | 55.00  | 141     |
| Fzd7-R             | GCGTCCTCTTGGTTCGTGT        | 60.30 | 57.89  | 141     |
| Gorasp2-F          | CACTGGGTTCCCTGTACCAC       | 59.96 | 60.00  | 173     |
| Gorasp2-R          | GATGCGACTCACAGAGACCA       | 59.47 | 55.00  | 173     |
| Hdac1-F            | CACGGGAGGCTCTGTCGCAAGTG    | 67.70 | 65.22  | 149     |
| Hdac1-R            | GTTCCAGGATGGCCAGGACGATGT   | 66.59 | 58.33  | 149     |
| Hdac2-F            | TGGTGCTGCAGTGTGGCGCA       | 68.07 | 65.00  | 133     |
| Hdac2-R            | CCTCCACCGAGCATCAGCAATGGC   | 68.10 | 62.50  | 133     |
| Hmga2-F            | AGGCAGGATGAGCGCACGCG       | 68.22 | 70.00  | 138     |
| Hmga2-R            | GAGGGCTCACAGGTTGGCTCTTGC   | 67.74 | 62.50  | 138     |
| Hoxa9-F            | ATCGATCCCAATAACCCGGCTGCCA  | 68.21 | 56.00  | 146     |
| Hoxa9-R            | ACCTCGTACCTGCGGTCCCGT      | 67.63 | 66.67  | 146     |
| laf1-F             | TGGCGCTCTGCTTGCTCACCT      | 67.00 | 61.90  | 138     |
| laf1-R             | AGCCATAGCCTGTGGGGCTTGTTGAA | 66 78 | 52.00  | 138     |
| Itaav-F            |                            | 58 77 | 54 55  | 147     |
| Itgav-R            |                            | 59.85 | 63.64  | 147     |
| Itab3-F            |                            | 59.07 | 61 90  | 100     |
| Itab3-R            |                            | 59.07 | 65.00  | 100     |
| lag1-F             |                            | 59.50 | 55.00  | 155     |
| Jag1-P             |                            | 50.31 | 55.00  | 155     |
| Kdm5d_E            |                            | 66 71 | 61.00  | 1/0     |
| Kdm5d_P            |                            | 66 17 | 52.00  | 149     |
| Kdm6a E            |                            | 66.20 | 66.67  | 149     |
| Kdm6a P            |                            | 66.62 | 56.00  | 130     |
| Kdm6h E            |                            | 69.51 | 75.00  | 145     |
| Kdm6h P            |                            | 67.01 | 66.67  | 145     |
|                    |                            | 60.24 | 60.97  | 145     |
| Lerr-F             |                            | 61.60 | 71 / 2 | 145     |
|                    |                            | 67.35 | 62.50  | 145     |
| Lyaiss-F           |                            | 66.64 | 70.00  | 100     |
| Lyaiss-in          |                            | 60.32 | 65.00  | 147     |
| Libp2-i            | GGGCGAIGCAGCAACACGGA       | 50.42 | 70.00  | 147     |
| Mbd1 E             |                            | 69.39 | 65.22  | 106     |
| Mbd1-P             |                            | 67.62 | 70.00  | 100     |
| Mod1-F             |                            | 60.11 | 55.00  | 100     |
| Med 1-P            |                            | 60.32 | 55.00  | 121     |
| Meis1_F            |                            | 50.82 | 55.00  | 142     |
| Mois1 P            |                            | 59.62 | 55.00  | 142     |
|                    |                            | 67.57 | 75.00  | 142     |
|                    |                            | 68.25 | 75.00  | 110     |
| Mmn15-E            |                            | 67.74 | 70.00  | 135     |
| Mmp15-P            |                            | 66.16 | 50.00  | 135     |
| Nfib_E             | ACCTCCCACCACCTACCCCC       | 67.23 | 71 / 3 | 130     |
| Nitio-I            |                            | 67.25 | 60.87  | 130     |
| Nib-R<br>Nifkhia-E |                            | 67.20 | 66.67  | 130     |
| Nikbia-P           |                            | 65.07 | 66.67  | 130     |
| Nnr3-F             |                            | 66 30 | 52.00  | 100     |
| Npr3-P             |                            | 67.60 | 63.64  | 100     |
| Nrp1_E             |                            | 50.02 | 50.04  | 144     |
| Nrp1-R             |                            | 50.02 | 70.00  | 1//     |
| Pak1_E             |                            | 65 10 | 56.52  | 1/10    |
| Pak1-P             |                            | 67 55 | 56.00  | 149     |
| Phrm1_E            |                            | 61 71 | 63.64  | 130     |
| Phrm1_P            |                            | 60.24 | 50.04  | 130     |
|                    |                            | 66 15 | 52 17  | 135     |
| Phy1-P             |                            | 68 27 | 71 /2  | 135     |
|                    | GCIGGGGICIGIGGGCICCI       | 00.37 | 11.43  | 130     |

|           |                           |       |         | PCR     |
|-----------|---------------------------|-------|---------|---------|
| Target    | Sequence 5'-3'            | Tm    | GC%     | product |
|           |                           |       | = 4 4 6 | size    |
| Pcbd1-F   | GGCTGGCCCTTGCTCCCTGAC     | 67.70 | /1.43   | 116     |
| Pcbd1-R   | AGCCCCAGTGAGGAGAGTGGCAC   | 68.15 | 65.22   | 116     |
| Plaur-F   | CACTGCAATGGTGGCCCAGTTCT   | 59.62 | 56.52   | 126     |
| Plaur-R   | CCGGCAGTTGATGAGAGACGCC    | 59.87 | 63.64   | 126     |
| Prtn3-F   | ATGCTTCGGAGACTCGGGCGG     | 60.97 | 66.67   | 122     |
| Prtn3-R   | ACATGGACACCCGGGCGAAGA     | 60.18 | 61.90   | 122     |
| Rad51-F   | TGCGTCAACCACCAGGCTGTACCT  | 68.22 | 58.33   | 132     |
| Rad51-R   | TTGGCATCGCCCACTCCATCTGC   | 67.63 | 60.87   | 132     |
| Rad54I-F  | CGTGGGGAGGAGCGTCTGCG      | 67.61 | 75.00   | 131     |
| Rad54I-R  | AGGGGTGTCAGCCTACAACAAACCA | 66.17 | 52.00   | 131     |
| Rpl13a-F  | CCCTCCACCCTATGACAAGA      | 58.12 | 55.00   | 153     |
| Rpl13a-R  | TTCTCCTCCAGAGTGGCTGT      | 60.18 | 55.00   | 153     |
| Rpl23-F   | CCCGTTCATATCCCAGTGTCCCCTG | 66.42 | 60.00   | 135     |
| Rpl23-R   | CAGCTCCGACCGGAAGACCCA     | 66.18 | 66.67   | 135     |
| Rpl39-F   | ATTCCTCCGCCATCGTGCGCG     | 68.20 | 66.67   | 130     |
| Rpl39-R   | TCCGGATCCACTGAGGAATAGGGCG | 67.47 | 60.00   | 130     |
| Rplp0-F   | TCCTATAAAAGGCACACGCGGGCA  | 66.78 | 54.17   | 106     |
| Rplp0-R   | ACGGCGGTGCGTCAGGGATTG     | 67.85 | 66.67   | 106     |
| Slit3-F   | TGCGGGAGGGTGCCTTCGAT      | 60.25 | 65.00   | 132     |
| Slit3-R   | GGTTGCTCCGCAACATCAGCG     | 59.28 | 61.90   | 132     |
| Smad4-F   | ATGCAGCAACAGGCGGCCACT     | 67.89 | 61.90   | 128     |
| Smad4-R   | CCAGCAGCAGCAGACAGACTGATGG | 67.48 | 60.00   | 128     |
| Smarca4-F | GTACAAAGACAGCAGCAGTGGACG  | 64.10 | 54.17   | 149     |
| Smarca4-R | TGCGGTACTTGTGGTTTCGGATGC  | 65.90 | 54.17   | 149     |
| Sphk1-F   | CCACTATGCTGGGTACGAGCAGGT  | 60.06 | 58.33   | 126     |
| Sphk1-R   | AGCCGCAGCCCAGAAGCAGTG     | 61.96 | 66.67   | 126     |
| Stat1-F   | CGCGTGGTGGTCCCAGCTCTCA    | 68.89 | 68.18   | 120     |
| Stat1-R   | CCAGCATTAGGGCCCAGCAGCTT   | 67.43 | 60.87   | 120     |
| Stat6-F   | ACCCCCAGGGTCTGCTGCAGT     | 68.01 | 66.67   | 134     |
| Stat6-R   | GGTGCCTTGGGGGAAACCTCCC    | 67.39 | 68.18   | 134     |
| Suz12-F   | AAGGAGACGCTGACTACAGAGCTGC | 66.71 | 66.67   | 147     |
| Suz12-R   | CGGGCAGTGCAGGTCGTCTCT     | 66.25 | 56.00   | 147     |
| Tgfb1-F   | ACCCCCATTGCTGTCCCGTGC     | 61.66 | 66.67   | 131     |
| Tgfb1-R   | TGGGGGTCAGCAGCCGGTTAC     | 60.78 | 66.67   | 131     |
| Tgfb2-F   | GCAGGAGAAGGCAAGCCGGAG     | 65.64 | 66.67   | 124     |
| Tgfb2-R   | CGGGATGGCATTTTCGGAGGGG    | 65.80 | 63.64   | 124     |
| Tgfb3-F   | TGCTTCCGCAACCTGGAGGAGA    | 65.90 | 59.09   | 145     |
| Tgfb3-R   | CTGCGCTGCGGAGGTATGGG      | 65.68 | 70.00   | 145     |
| Tgfbr1-F  | GGGTCTGGATCAGGTTTACCACTGC | 65.07 | 56.00   | 118     |
| Tgfbr1-R  | CTCCCCGCCATTTGCCTCGC      | 66.52 | 70.00   | 118     |
| Tgfbr2-F  | CGCACGTTCCCAAGTCGGATGT    | 65.56 | 59.09   | 141     |
| Tgfbr2-R  | GAAGCTTGACCGCACCGCCA      | 66.03 | 65.00   | 141     |
| Thbs1-F   | AATGCCAACCAGGCCGACCA      | 58.90 | 60.00   | 150     |
| Thbs1-R   | GTCACCTCGGCCATCACCATCA    | 58.64 | 59.09   | 150     |
| Vcam1-F   | TGTCAACGTTGCCCCCAAGGA     | 58.55 | 57.14   | 124     |
| Vcam1-R   | GCTCCACAGGATTTTGGGAGCTGG  | 59.76 | 58.33   | 124     |
| Wnt2-F    | AGCGGGCCGTGTGTGCAACTT     | 62.10 | 61.90   | 149     |
| Wnt2-R    | AGTCCTGACAGCGCACGGCA      | 61.08 | 65.00   | 149     |
|           |                           |       |         |         |

Table S7 (related to Figures 1, S2, S5, and Experimental Procedures). Gene-specific primers used for RT-qPCR analysis used in this study. The primers were designed using the NCBI primer design tool Primer-BLAST http://www.ncbi.nlm.nih.gov/tools/primerblast/ using the default parameters, except that the PCR product size was restricted to 100-150 bp and the primers were required to span an exon-exon junction in order to eliminate genomic DNA amplification.

## Table S8

| Antibody                      | Manufacturer               | Catalog Nr. | Dilution | Antibody |
|-------------------------------|----------------------------|-------------|----------|----------|
| Antibody                      |                            |             |          | species  |
| anti-CDC25A                   | Cell Sign. Techn., US      | 3652        | 1:50     | rabbit   |
| anti-CDK2                     | Cell Sign. Techn., US      | 2546        | 1:50     | rabbit   |
| anti-CDK4                     | Cell Sign. Techn., US      | 2906        | 1:50     | mouse    |
| anti-CTGF                     | Santa Cruz Biotec., US     | sc-25440    | 1:50     | rabbit   |
| anti-Cyclin D1                | Cell Sign. Techn., US      | 2978        | 1:25     | rabbit   |
| anti-Cyclin E2                | Cell Sign. Techn., US      | 4132        | 1:100    | rabbit   |
| anti-p21Cip1 (CDKN1A)         | Santa Cruz Biotec., US     | sc-271532   | 1:50     | mouse    |
| anti-p27Kip1 (CDKN1B)         | BD Transduct. Laborat., US | 610242      | 1:100    | mouse    |
| anti-p300                     | Upstate/Millipore, US      | 05-2576     | 1:100    | mouse    |
| anti-phospho- Ser473 AKT      | Cell Sign. Techn., US      | 9271        | 1:25     | rabbit   |
| anti-phospho- Thr308 AKT      | Cell Sign. Techn., US      | 2965        | 1:100    | rabbit   |
| anti-phospho-Ser 33/          | Cell Sign. Techn., US      | 9561        | 1:100    | rabbit   |
| Ser 37/ Thr 41 beta-catenin   |                            |             |          |          |
| anti-phospho- Tyr925 FAK      | Cell Sign. Techn., US      | 3284        | 1:50     | rabbit   |
| anti-phospho-FoxO1 Ser256     | Cell Sign. Techn., US      | 9461        | 1:50     | rabbit   |
| anti-phospho-GSK3-beta Ser9   | Cell Sign. Techn., US      | 5558        | 1:400    | rabbit   |
| anti-phospho-Lrp6 Ser1490     | Cell Sign. Techn., US      | 2568        | 1:200    | rabbit   |
| anti-phospho-Thr202/ Tyr204   | Coll Sign Toohn US         | 4277        | 1.200    | rabbit   |
| p44/42 MAPK (Erk1/2)          | Cell Sign. Techn., 05      | 4377        | 1.200    | Tabbit   |
| anti-phospho-Ser15 TP53       | Cell Sign. Techn., US      | 9284        | 1:50     | rabbit   |
| anti-phospho-Ser780 RB        | Cell Sign. Techn., US      | 8180        | 1:200    | rabbit   |
| anti-phospho-Ser465/467 SMAD2 | Cell Sign Techn LIS        | 9510        | 1.200    | rabbit   |
| - Ser423/425 SMAD3            | Cell Sign. Techni, US      | 3310        | 1.200    | ιασσι    |
| PTEN                          | Cell Sign. Techn., US      | 9552        | 1:100    | rabbit   |
| SKP2                          | Cell Sign. Techn., US      | 4358        | 1:50     | rabbit   |

Table S8 (related to Figures 1, 6, S5, S6, and Experimental Procedures). Primary antibodies used for the Immunofluorescence (IF) staining in this study. Antibody manufacturer with catalog-number and species, as well as the dilution at which the antibody was used are represented.

#### Legends to additional supplementary tables (Excel supplement)

Table S1. Downregulated genes in Cluster C1 (related to Figure 1B and 1C). ToppFun analysis of functional categories significantly associated with genes down-regulated after performing two-way comparison of 24 h co-culture-derived (Day1; d1) vs. separately cultured UG26-1B6 (Day0; d0) cells unified STEM (Supplementary Table1) and in ((Ernst and Bar-Joseph, 2006); http://www.cs.cmu.edu/jernst/stem) cluster #1 (C1; Figure 1B, C). ToppFun is part of the ToppGene Suite http://toppgene.cchmc.org (Chen et al., 2009). Detects enriched terms of the gene annotations and sequence features, namely, GO: Molecular Function, GO: Biological Process, Mouse Phenotype, Pathways, Protein Interactions, Protein Domains, transcription factor binding sites, miRNA-target genes, disease-gene associations, drug-gene interactions and Gene Expression, compiled from various data sources. Hypergeometric distribution with Bonferroni correction (p-Value cutoff <= 0.05, default parameters) was used for determining statistical significance.

**Table S2. Upregulated genes in Cluster C2 (related to Figure 1B and 1D).** ToppFun analysis of functional categories significantly associated with genes up-regulated after performing two-way comparison of 24 h co-culture-derived (Day1; d1 cc) vs. separately cultured UG26-1B6 (Day0; d0) cells (Supplementary Table1) and unified in STEM ((Ernst and Bar-Joseph, 2006); http://www.cs.cmu.edu/jernst/stem) cluster #2 (C2; Figure 1B, D). ToppFun is part of the ToppGene Suite http://toppgene.cchmc.org (Chen et al., 2009). Detects enriched terms of the gene annotations and sequence features, namely, GO: Molecular Function, GO: Biological Process, Mouse Phenotype, Pathways, Protein Interactions, Protein Domains, transcription factor binding sites, miRNA-target genes, disease-gene associations, drug-gene interactions and Gene Expression, compiled from various data sources. Hypergeometric distribution with Bonferroni correction (p-Value cutoff <= 0.05, default parameters) was used for determining statistical significance.

**Table S3. Total list of differentially expressed stromal genes upon contact with LSK cells.** Genes differentially expressed (DEGs) after performing two-way comparison of 24 h co-culture-derived (Day1; d1 cc) vs. separately cultured UG26-1B6 (Day0; d0) cells. GcRMA-normalized gene expression data were first filtered using an additional control 24 h after changing the culture medium (d1 mc). Co-culture-derived transcripts that did not show significant positive (p-Value <= 0.05) associations with medium-control-derived transcripts in terms of Pearson's correlation coefficient, as well as transcripts that were part of our microarray validation set were further subjected to empirical Bayes test statistics as implemented in LIMMA (Smyth et al., 2005). Genes where considered differentially expressed (DEGs), if their expression level difference was -1 <= log2FC >= 1 and p-Value <= 0.05 across the two time points being compared.

Table S4. Seed list of hematopoiesis-associated genes for network modeling (related to Figure 5). Hematopoiesis-associated genes retrieved by performing extensive biomedical literature search using the text-mining tool EXCERBT (Extraction of Classified Entities and Relations from Biomedical Texts) (Barnickel et al., 2009; Mewes et al., 2011). Co-occurrence search was employed in order to retrieve all the genes associated with the phenotype 'hematopoiesis'. Thereafter, false positives were discarded by manual

curation. By this, a list of 374 genes shown to modulate hematopoietic stem cells (HSCs) or hematopoiesis in general was obtained. This seed list was further supplemented with ToppGene mouse phenotypic data associated with phenotypes 'leukemia' (HP:0001909), 'acute leukemia' (HP:0002488), 'hematological neoplasia' (HP:0004377), 'abnormal hematopoiesis' (MP:0002123), 'abnormal hematopoietic cell number' (MP:0011180) and 'abnormal hematopoietic stem cell morphology' (MP:0004808), yielding an extended list of 1737 genes.

**Table S5. CTGF interaction partners for network modeling (related to Figure 5).** CTGF interaction partners retrieved by performing extensive biomedical literature search using the textmining tool EXCERBT (Extraction of Classified Entities and Relations from Biomedical Texts) (Barnickel et al., 2009; Mewes et al., 2011). Co-occurrence search was employed in order to retrieve all the molecular species and phenotypes associated with Ctgf. Thereafter, false positives were discarded by manual curation. By this, a list of 274 unique interactions was obtained (since in some cases controverse results were reported and/or more than one source yealded the association, the total number of interactions was 548).

Table S6. CTGF signaling network model of cell cycle regulation (related to Figure 5). Construction of the literature-based signaling network model of CTGF-regulated HSC cell cycle progression. Literature mining using EXCERBT (Extraction of Classified Entities and Relations from Biomedical Texts) (Barnickel et al., 2009; Mewes et al., 2011) and manual curation was performed to identify the pathways and major molecular players relaying a signal from CTGF to the terminal nodes associated with the cell cycle regulation: *Ctgf*, Cyclin D1 (*Ccdn1*), p21Cip1 (*Cdkn1a*), FoxO1 (*Foxo1*) and LEF (*Lef1*). The network was split into two sub-networks associated with functional outcomes (i) G0/G1 defined as the activation of Cyclin D:Cdk4/6 and (ii) G1/S block, where the induction of p21Cip1 and/or p27Kip1 serves as the readout. In order to keep the size of the network meaningful, parts of it were simplified, for example, the MAPK cascade, in which a series of nodes and edges impinge only on each other (see KEGG map04510: Focal adhesion), was reduced to FAK  $\rightarrow$  Erk1/2.

### 4. Supplemental References

Barnickel, T., Weston, J., Collobert, R., Mewes, H. W., and Stumpflen, V. (2009). Large scale application of neural network based semantic role labeling for automated relation extraction from biomedical texts. PloS one *4*, e6393.

Bauer-Mehren, A., Furlong, L. I., and Sanz, F. (2009). Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Molecular systems biology *5*, 290.

Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research *37*, W305-311.

Ernst, J., and Bar-Joseph, Z. (2006). STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics 7, 191.

Gonzalez, A. G., Naldi, A., Sanchez, L., Thieffry, D., and Chaouiya, C. (2006). GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Bio Systems *84*, 91-100.

Mewes, H. W., Ruepp, A., Theis, F., Rattei, T., Walter, M., Frishman, D., Suhre, K., Spannagl, M., Mayer, K. F., Stumpflen, V., and Antonov, A. (2011). MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic acids research *39*, D220-224.

Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U. U., Weismantel, R., Gilles, E. D., Klamt, S., and Schraven, B. (2007). A logical model provides insights into T cell receptor signaling. PLoS computational biology *3*, e163.

Schlitt, T., and Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC bioinformatics *8 Suppl 6*, S9.

Singhania, R., Sramkoski, R. M., Jacobberger, J. W., and Tyson, J. J. (2011). A hybrid model of mammalian cell cycle regulation. PLoS computational biology 7, e1001077.

Smyth, G. K., Michaud, J., and Scott, H. S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics *21*, 2067-2075.

Yener, B., Acar, E., Aguis, P., Bennett, K., Vandenberg, S. L., and Plopper, G. E. (2008). Multiway modeling and analysis in stem cell systems biology. BMC systems biology *2*, 63.