SUPPLEMENTARY INFORMATION

Lipoteichoic acid of *Streptococcus oralis* Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to *Streptococcus pneumoniae*

Nicolas Gisch^{1,*}, Dominik Schwudke¹, Simone Thomsen¹, Nathalie Heß², Regine Hakenbeck², and Dalia Denapaite²

¹Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany
 ²Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich Straße 24, 67663 Kaiserslautern, Germany

*Correspondence to: Nicolas Gisch, Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/4c, 23845 Borstel, Germany. Email: ngisch@fz-borstel.de

Figure S1. Representative chromatogram of the hydrophobic interaction chromatography of A) native *S. oralis* Uo5 Δcps LTA including normalized visualization of the phosphate content of selected fractions and B) *S. oralis* Uo5 Δcps LTA after 2 d HF treatment (UV detection in A) and B) at $\lambda = 254$ nm). In A) combining of fractions is based on the phosphate content, fractions #26-31 contain the LTA. The major UV absorption observed in fractions #21-25 is caused by other, non-LTA species, such as lipopeptides. In B) combining of fractions is based on the UV absorption, since HF treatment removes the phosphate groups (**Attention**: consider the 10-fold less mV-scale in B) compared to A)). Fractions #7-11 contain among other things the monoPS units **6a,b** and **7a,b**, their further purification is shown in Fig. S4. Fractions #27-34 contain the tsDAG **5**.

Figure S2. Section of the charge deconvoluted ESI-FT-ICR-MS spectrum (acquired in positive ion mode) of the pool comprising the lipid anchor-containing tsDAG **5** and respective monoacylated variants (*lyso*-tsDAG) obtained by HIC purification (fractions 27-34; Fig. S1B) after 2 d HF treatment of *S. oralis* Uo5 Δcps LTA.

Figure S3. Section of the charge deconvoluted ESI-FT-ICR-MS spectrum (acquired in positive ion mode) after 8 h HF treatment of *S. oralis* Uo5 Δcps LTA.

Table S1. ¹H (700.4 MHz) and ¹³C NMR (176.1 MHz) chemical shift data (δ , ppm) [*J*, Hz] for **5** isolated from *S. oralis* Uo5 Δcps LTA after 2 d HF treatment (fractions 27-34; Fig. S1B). Values for fatty acid residues and the additionally present *lyso*-compounds (appr. 25%) are not listed. *non-resolved multiplet.

Sugar residue	H-1	H-2	H-3	H-4	H-5	H-6	NAc
-	C-1	C-2	C-3	C-4	C-5	C-6	
β -D-Gal p -(1 \rightarrow	4.32 [7.7]	3.54 [9.8,	3.44 [9.8,	3.81-	3.52-	3.71-3.66*/	
		8.0]	3.3]	3.77*	3.47*	3.75 [11.6, 7.2]	
	106.4	72.2	74.4	70.1	76.8	62.5	
\rightarrow 3)- β -AATGal <i>p</i> -(1 \rightarrow	4.65 [8.5]	3.92 [10.8,	3.88-3.84*	3.29-	3.83-	1.32-1.28*	1.98
		8.5]		3.26*	3.77*		
	103.3	52.5	81.5	55.1	70.7	16.9	23.1
							174.5
\rightarrow 3)- α -D-Glc $p(1\rightarrow$	4.79 [3.6]	3.52-3.48*	3.68-3.64*	3.39-	3.62-	3.70-3.65*/	
				3.33*	3.57*	3.82-3.77*	
	100.4	72.4	84.4	69.7	73.3	62.2	
\rightarrow 3)-Gro(acyl) ₂	4.21 [12.6,	5.28-5.24*	3.68-3.62*/				
	6.7]/ 4.47		3.90-3.86*				
	[12.1, 3.8]						
	63.5	71.3	66.9				

Figure S4. Representative chromatogram of a gel permeation chromatography (GPC; Bio-Gel P-10 column, 150 mM ammonium acetate (pH 4.7)) of the monomerized polysaccharide units containing pool after HIC purification (fractions 7-11; Fig. S1B) of 2 d HF treated LTA. Pool 1 contained **6a** and **6b**, pool 2 **7a** and **7b**, respectively.

Figure S5. Section of the charge deconvoluted ESI-FT-ICR-MS spectra (acquired in positive ion mode) of **7a,b** obtained after 2 d HF treatment of LTA of *S. oralis* Uo5 Δ *cps* and subsequent purification by HIC and GPC (P-10 pool 2 in Fig. S4). Besides the major molecule **7b** with a MW_{found} of 865.353 Da (MW_{calc}: 865.347 Da), a second compound with one hexose less (**7a**; MW_{found}: 703.301 Da; MW_{calc}: 703.298 Da) was observed. For both molecules, variants with a bound alanine or acetyl residue (Table S2) have been identified with very small signal intensity as well.

Table S2. Summary of selected calculated and observed molecular masses [Da] for the isolated monoPS units of *S. oralis* LTA after 2 d HF treatment (**6a,b**: P-10 pool 1 of Fig. S4, MS spectrum in Fig. 2; **7a,b**: P-10 pool 2 of Fig. S4, MS spectrum in Fig. S5). Structures are shown in Fig. 1.

Compound	Calculated	Observed
6b	1030.403	1030.408
- $H^+ + Na^+$	1052.385	1052.390
+ acetyl	1072.413	1072.421
$+ acetyl - H^+ + Na^+$	1094.395	1094.401
+ alanine	1101.440	1101.445
6a	868.353	868.356
- $H^+ + Na^+$	890.335	890.337
+ acetyl	910.364	910.367
+ a lanine	939.390	939.393
7b	865.347	865.353
- $H^+ + Na^+$	887.329	887.335
+ acetyl	907.358	907.364
$+ acetyl - H^+ + Na^+$	929.340	929.345
+ alanine	936.384	936.390
7a	703.298	703.301
$-H^+ + Na^+$	725.280	725.282
+ acetyl	745.308	745.311
+ alanine	774.335	774.338

Residue H-1 H-2 H-3 H-4 H-5 H-6 NAc (assignment, C-1 C-2 C-3 C-4 C-5 C-6 abundance) 5.13 [3.3] 3.86-3.83* 3.96-3.92* 4.02-3.99* 4.21-4.17* 3.74-3.70* α -D-Galp-(1 \rightarrow 96.0 68.9 69.8 69.8 71.4 61.5 (**E**, 0.7) 3.77-3.70* \rightarrow 3)- β -D-Galp-(1 \rightarrow 3.67-3.62* 3.75-3.70* 4.16-4.13* 3.72-3.68* 4.50 [7.7] 105.2 69.8 77.8 65.4 74.5 61.6 (**C**, 0.7) 3.54-3.50* 3.77-3.70* β -D-Galp-(1 \rightarrow 4.44 [7.7] 3.63-3.59* 3.92-3.88* 3.69-3.66* 105.3 71.2 73.1 69.2 74.5 61.6 (**C**[#], 0.3) 4.68-4.64* 4.03-3.98* 3.95-3.91* 3.40-3.34* 3.89-3.84* 1.28 [5.9] 2.06 ${\rightarrow} 3){\text{-}}\beta{\text{-}}AATGalp{\text{-}}$ 102.7 51.2 80.7 54.3 69.9 16.5 22.9 $(1 \rightarrow$ (**B**, 1.0) 175.6 **B**[#] 3.96-3.92* 80.1 4.70-4.67* 3.97-3.93* 4.24-4.21* 4.23-4.19* 3.66-3.62* 3.82-3.78* 2.02 \rightarrow 4)- β -D-3-O-P-Cho-102.3 74.6-74.4 75.9-75.7 75.3 23.0 $GalpNAc (1 \rightarrow$ 52.6-52.5* 61.6 175.0 (**D**, 1.0) 4.33-4.27* 3.69-3.65* 3.22 $Cho-P-(O \rightarrow$ 4.24-4.18* 60.2 [4.9] 66.6-66.5* 54.6 3.84-3.80* 3.98-3.94* 3.88-3.85* 3.76-3.73* 3.81-3.77* \rightarrow 2-ribitol 3.70-3.66* 3.63-3.59* (**Rib-ol**, 1.0) 61.0 81.8 72.4 72.1 63.4

Figure S6. Magnification of the marked section in Fig. 4 (dotted square) of the ESI-FT-ICR-MS spectra of **10** (for structure see Fig. 5A) indicating the presence of a small population of LTA molecules with just one RU without an α -Gal moiety.

Figure S7. Section ($\delta_{\rm H}$ 6.0-0.0) of the ¹H NMR of *S. oralis* Uo5 Δcps LTA measured in D₂O at 325 K.

Figure S8. Magnified section of the MS spectra of natural LTA of *S. oralis* Uo5 Δcps shown in Fig. 6. The isolated LTA fraction contained molecules with different fatty acid compositions; (CH₂)₂-unit differences for fully saturated species are indicated ($\Delta = 28$ Da); molecular species containing one to three alanine substituents ($\Delta = 71$ Da) or one additional 4-OAc-galacose molecular species are listed in Table S4.

LTA speci	es: Gro +	Glc +	Monoisoto	pic mass [Da]	
Fatty acids	RU 1*	RU 2**	Calculated	Observed	Mass accuricy
-			(sodium adduct)	(sodium adduct)	[ppm]
	2	1			
32:1			4218.694	4218.710	3.8
32:0			4220.710	4220.723	3.1
34:2			4244.710	4244.718	1.9
34:1			4246.725	4246.755	7.1
34:0			4248.741	4248.757	3.8
	2	2			
32:1			5518.118	5518.117	-0.2
32:0			5520.134	5520.115	-3.4
34:2			5544.134	5544.149	2.7
34:1			5546.150	5546.146	-0.7
34:0			5548.165	5548.143	-4.0
	2	3			
30:0			6791.527 (6813.509)	6791.540 (<i>n.d.</i>)	1.9
32:2			6815.527 (6837.509)	6815.566 (6837.625)	5.7 (17.0)
32:1			6817.543 (6839.525)	6817.569 (6839.579)	3.8 (7.9)
32:0			6819.558 (6841.541)	6819.546 (6841.597)	-1.8 (8.2)
+ 1 Ala			6890.596 (6912.578)	6890.661 (<i>6912.680</i>)	9.4 (14.8)
+ 2 Ala			6961.633 (6983.615)	6961.634 (6983.604)	0.1 (-1.6)
+ 3 Ala			7032.670 (7054.652)	7032.577 (7054.598)	-13.2 (-7.7)
+ 4-0Ac-Gal			7023.618 (7045.601)	7023.578 (7045.494)	-5.7 (-15.2)
34:2			6843.558 (6865.541)	6843.615 (6865.614)	8.3 (10.6)
34:1			6845.574 (6867.556)	6845.600 (6867.622)	3.8 (9.6)
34:0			6847.590 (6869.572)	6847.649 (6869.6 <i>31</i>)	8.6 (8.6)
+ 1 Ala			6918.627 (6940.609)	6918.684 (6940.636)	8.2 (3.9)
+ 2 Ala			6989.664 (7011.646)	6989.614 (<i>n.d.</i>)	-7.2
+ 4-0Ac-Gal			7051.650 (7073.632)	7051.600 (7073.535)	-7.1 (-13.7)
36:2			6871.590 (6893.572)	68/1.640 (6893.669)	7.3 (14.1)
36:1			6873.605 (6895.588)	6873.648 (6895.631)	6.3 (6.3)
36:0			68/5.621 (689/.603)	68/5.660 (689/.658)	5.8 (8.0)
	•				
22.1	2	4	0116.067	0116 005	0.0
32:1 22:0			8110.90/	8110.893	-8.9
52:U 24-2			ð11ð.9ð3 9140 092	8118.901 8142 014	-10.1
34:2 34-1			0142.900	0142.914	-0.3
34:1 34:0			8144.999 8147.014	8144.894 8146.052	-12.9
34:0			8147.014	8140.952	-7.0

Table S4. Assigned molecular species of *S. oralis* $Uo5\Delta cps$ LTA considering different fatty acid combinations, different numbers of RUs, and potential additional substituents.

*RU 1 = 3,6-di-*O*-*P*-Cho- β -D-Gal*p*NAc-(1 \rightarrow 2)-Rib-ol-1-*P*-(*O* \rightarrow 6)- β -D-Gal*p*-(1 \rightarrow 3)-AATGal*p* (**8**) **RU 2 = 3,6-di-*O*-*P*-Cho- β -D-Gal*p*NAc-(1 \rightarrow 2)-Rib-ol-1-*P*-(*O* \rightarrow 6)-(3- α -D-Gal*p*,4-OAc)- β -D-Gal*p*-(1 \rightarrow 3)-AATGal*p* (**9**b).

Name	Sequence (5'-3')
U05_cps_pcr1_f	CCGTCAGGCTATCAACTTTGGTATTGATCG
U05_cps_pcr1_r	CCTCTGGAATAGGCGTCGACGCGAATAATCCCCTATACACGTTAATAG
U05_cps_pcr2_f	TAACGTGTATAGGGGGATTATTCGCGTCGACGCCTATTCCAGAGG
U05_cps_pcr2_r	GATTAATGAGTAACTTCAAAATTCCTTCAGAAAAGATTAGATGTC
U05_cps_pcr3_f	GACATCTAATCTTTTCTGAAGGAATTTGAAGTTACTCATTAATCAG
U05_cps_pcr3_r	GTCGATGACCTACCTGATCCGCAAACAGAG

 Table S5. Oligonucleotides used in this study.