Stem Cell Reports
Supplemental Information

# Cloning-free CRISPR

Mandana Arbab, Sharanya Srinivasan, Tatsunori Hashimoto, Niels Geijsen, and Richard

I. Sherwood



### **Figure S1**

a. Sanger sequencing analysis of genomic DNA from two *Hist1h3a*-GFP<sup>-</sup> clones produced through scCRISPR with sgPal and sgGFP1, showing short deletions surrounding the expected CRISPR cut site. b. Histograms showing flow cytometric HIST1H2BJ-GFP fluorescence (x-axis) after electroporation with Cas9 and sgPal alone (left panel), sgPal and sgGFP homology fragment (middle panel), or sgGFP plasmid (right panel). c. Histograms showing flow cytometric *Hist1h3a*-GFP fluorescence (x-axis) after electroporation with Cas9, sgRNA plasmid, and homology fragment. Co-electroporation of a non-palindromic sgRNA plasmid (sgnonPal) exhibits substantially less GFP loss than sgPal1 (Figure 1), indicating that self-cleavage is an important factor in scCRISPR efficiency. A homology fragment with 30 bp of homology shows substantially less GFP loss than the standard homology arms (Figure 1), indicating that homology arm length is important in scCRISPR efficiency. Taken together, these results argue that scCRISPR functions through homologous recombination. d Histograms showing flow cytometric *Hist1h3a*-GFP fluorescence (x-axis) after electroporation with Cas9, palindromic sgRNA plasmids, and homology fragment. Palindromic sgRNA plasmids (sgPal2-10) all exhibit substantial GFP loss, but differ widely in their relative efficiency. sgPal7 induces the highest degree of GFP loss among the ten palindromic sgRNA's. e. Histograms showing flow cytometric Hist1h3a-GFP fluorescence (x-axis, a) or DsRed fluorescence (x-axis, b) after electroporation with Cas9, sgRNA plasmid, and homology fragment. In these plots, sgPal is combined with homology fragments targeting two additional sites within the GFP gene (sgGFP2 and sgGFP3) as well as two locations within the dsRed gene (sgDsRed1 and sgDsRed2), producing >55% loss of fluorescence in all cases. Additionally, multiplexing sgGFP2 and sgGFP3 in *Hist1h3a*-GFP cells, or sgDsRed1 and sgDsRed2 in dsRed positive cells increases the fraction of cells with loss of fluorescence. Multiplexing sgGFP2 and sgDsRed1 in single positive Hist1h3a-GFP mouse ESCs cells only minimally decreases the fraction of cells with loss of GFP fluorescence, indicating that scCRISPR can lead to efficient and specific multiplexed mutation.f. Sanger sequencing analysis of a gel-isolated deletion band from bulk genomic DNA of Hist1h3a-GFP cells after multiplexed scCRISPR with sgPal1, sgGFP2, and sgGFP3. This band shows a 134 bp deletion with junctions at the predicted CRISPR cut sites.g. Multiplexed mutation of GFP (x-axis) and dsRed (y-axis) in Hist1h3a-GFP Rosa26-dsRed mouse ESCs (left panel) after cointroduction of Cas9, sgPal plasmid, and sgGFP2 and sgDsRed1 standard length homology fragments.



Autofluorescence→

#### **Figure S2**

a. Flow cytometric analysis shows efficient generation of Nanog-GFP knock-in mouse ESCs (y-axis) after scCRISPR, gBlock-CRISPR, and plasmid-based CRISPR using a PCR-amplified GFP fragment with 80 bp Nanog homology arms. b. Genomic DNA PCR analysis using a forward primer in the *Hist1h3a* coding region and a reverse primer in the GFP coding region that will produce a 166 band only if GFP is inserted into the *Hist1h3a* locus. scCRISPR and gBlock-CRISPR-based knock-in using PCR-amplified GFP fragments with 80 bp *Hist1h3a* homology arms show robust bands indicating successful knock-in. c. Flow cytometric analysis shows efficient generation of GFP knock-in at four loci in mouse ESC (y-axis) using a PCR-amplified GFP fragment with 80 bp homology arms. Top row Nfya, Rpp25, and Sox2 lines are C-terminal GFP fusion proteins and Zfp42 is a GFP replacement. Middle and bottom row show flow cytometric analysis of nine clonal mouse ESC knock-in lines, all generated using PCR-amplified 80 bp homology arms. All are C-terminal GFP fusion cell lines except *Tdgf1* and Zfp42, which are GFP replacements. All lines have clonal knock-in in every cell, but GFP fluorescence intensities vary based on the native gene expression levels. Bulk measurements of GFP fluorescence were only performed for the four loci in the top row. d. Copies of GFP called by quantitative-PCR using Taqman Copy Number Assay. GFP integrations were assed by comparing CT amplification values of GFP and *Tfrc* as a reference gene, using eGFP FAM-labeled probes and VIC-labeled TAMRA probes, respectively. Copies per cell were calculated using CopyCaller software.e. PCR amplification spanning the appropriate GFP integration sites for *Hist1h3a*, *Nanog*, *Nfya*, *Tdgf1*, and Zfp42 heterozygous GFP cell lines. Upper bands in Hist1h3a, Nanog, and Nfya cell lines indicate insertion of ±750bp GFP sequence. The integrated sequence in *Tdqf1* and *Zfp42* cell lines encodes GFP with an extended poly-A tail, and is ±1150bp long. The lower bands show amplification of the endogenous loci.f. Fluorescence imaging of Sox2-GFP cells and histograms showing flow cytometry of Sox2-GFP fluorescence (x-axis) prior to, and 96 hours after mouse ESC incubation with serum-reduced media. Stem cell differentiation leads to substantial loss of SOX2 expression and a loss of GFP fluorescence in 63% of cells is observed accordingly, indicating GFP reports faithfully on Sox2 gene expression. g. Histograms showing flow cytometric Sox2-GFP fluorescence (x-axis) after electroporation with Cas9 with sgPal1 alone, or in combination with an sgRNA fragment targeted to the Sox2 promoter region (sgSox2Pro). sgPal1 alone does not affect Sox2-GFP expression while combined sgPal1 with sgSox2Pro fragment induces a loss of measurable GFP fluorescence, indicating GFP signal is regulated by Sox2 regulatory elements. h-i. Flow cytometric and fluorescence microscopy analysis show efficient loss of Hist1h3a-GFP after co-electroporation of Cas9 with GFP-targeting gBlock sgRNA. j-k. Fluorescence microscopy of nuclear GFP expression in mouse and human ESCs after targeted GFP insertion into *Hist1h3a* or *HIST1H2BJ* loci, respectively. Cells were targeted by co-electroporation of Cas9, sgHist1h3a or sgHIST1H2BJ PCR amplified gBlocks, along with PCR-amplified GFP fragments with 80 bp overhangs homologous to the respective regions. I. Flow cytometric analysis of HEK293T shows efficient generation of HIST1H2BJ-GFP knock-in cells (y-axis) after, gBlock-CRISPR using a PCR-amplified GFP fragment with 80 bp *HIST1H2BJ* homology arms.

# Supplemental Table 1: Comparison of time, cost, and efficiency of CRISPR/Cas9 mutation and gene knock-in using different methods of sgRNA introduction

|                                  |                 |                                                 |                           |                                                 |                                        |                              | Cost in USD | Mutation Rate | Gene Knock-In |
|----------------------------------|-----------------|-------------------------------------------------|---------------------------|-------------------------------------------------|----------------------------------------|------------------------------|-------------|---------------|---------------|
| sgPal                            | - Order oligo's | - PCR amplify<br>- Target Cells                 |                           |                                                 |                                        |                              | ± 15        | ≥ 85%         | ± 0.5%        |
| gBlock<br>sgRNA                  | - Order gBlock  |                                                 | 4 days                    | - PCR amplify<br>- Target Cells                 |                                        |                              | ± 90        | ≥ 90%         | ± 3%          |
| conventional<br>plasmid<br>sgRNA | - Order oligo's | - Anneal<br>- Digest Vector<br>- Transformation | 1 day<br>- Colony Picking | 2 days<br>- Miniprep<br>- Sequence verification | 1 day<br>- Amplify<br>bacterial colony | - Midiprep<br>- Target Cells | ± 85 - 100  | ≥ 90%         | ± 1%          |

| Nomo    | Samuanaa               |              | Missmatches |           | 21   |
|---------|------------------------|--------------|-------------|-----------|------|
| Name    | Sequence               | BLAST HILS   | Overall     | Last 11nt | SIIL |
| sgPal1  | GCTCTGTGACT AGTCACAGAG | Human cr.2   | 4           | 2         | GGG  |
|         |                        | Human cr.8   | 4           | 1         | AGG  |
|         |                        | Human cr.10  | 4           | 2         | GGG  |
|         |                        | Human cr.20  | 4           | 2         | AGG  |
|         |                        | Human cr.22  | 4           | 2         | GGG  |
|         |                        | Mouse cr.11  | 4           | 2         | GGG  |
|         |                        | Mouse cr.9   | 4           | 2         | AGG  |
| sgPal2  | GCGGAACACA TGTGTTCCG   | Human cr.22  | 4           | 2         | GGG  |
|         |                        | Mouse cr.5   | 4           | 2         | GGG  |
|         |                        | Mouse cr.17  | 4           | 1         | CGG  |
| sgPal3  | TCGATCGTCG CGACGATCGA  | none         | -           | -         | -    |
| sgPal4  | CGACGATCGA TCGATCGTCG  | none         | -           | -         | -    |
| sgPal5  | GCAGTACTTTG CAAAGTACTG | Human cr.1   | 4           | 2         | GGG  |
|         |                        | Human chr.2  | 4           | 2         | TGG  |
|         |                        | Mouse chr.2  | 3           | 2         | TGG  |
|         |                        | Mouse chr.6  | 4           | 1         | TGG  |
|         |                        | Mouse chr.15 | 4           | 2         | GGG  |
|         |                        | Mouse chr.19 | 4           | 1         | GGG  |
| sgPal6  | GTCCCATCCTT AAGGATGGGA | Human cr.6   | 4           | 2         | TGG  |
|         |                        | Human chr.9  | 4           | 2         | TGG  |
|         |                        | Mouse chr.2  | 4           | 2         | CGG  |
|         |                        | Mouse chr.5  | 4           | 2         | AGG  |
|         |                        | Mouse chr.11 | 4           | 2         | GGG  |
|         |                        | Mouse chr.11 | 4           | 2         | TGG  |
|         |                        | Mouse chr.12 | 4           | 2         | TGG  |
|         |                        | Mouse chr.16 | 4           | 2         | AGG  |
| sgPal7  | GGCTTAGTACT AGTACTAAGC | Human cr.16  | 4           | 1         | AGG  |
|         |                        | Mouse chr.1  | 4           | 1         | AGG  |
| sgPal8  | GGCCTTTCGAC GTCGAAAGGC | Human chr.2  | 4           | 2         | CGG  |
|         |                        | Human chr.2  | 4           | 2         | GGG  |
|         |                        | Human chr.4  | 4           | 1         | AGG  |
|         |                        | Mouse chr.1  | 4           | 2         | AGG  |
| sgPal9  | GCGACCTGCAT ATGCAGGTCG | Human chr.1  | 4           | 1         | GGG  |
|         |                        | Human chr.17 | 4           | 2         | AGG  |
|         |                        | Human chr.18 | 4           | 2         | GGG  |
|         |                        | Mouse chr.11 | 4           | 2         | TGG  |
| sgPal10 | GAATCTGCCAG CTGGCAGATT | Human chr.1  | 4           | 2         | GGG  |
|         |                        | Human chr.9  | 4           | 2         | AGG  |
|         |                        | Human chr.11 | 4           | 2         | GGG  |
|         |                        | Human chr.15 | 4           | 2         | AGG  |
|         |                        | Human chr.22 | 4           | 1         | AGG  |
|         |                        | Human chr.22 | 4           | 2         | TGG  |
|         |                        | Mouse chr.2  | 4           | 2         | GGG  |
|         |                        | Mouse chr.12 | 4           | 2         | GGG  |
|         |                        | Mouse chr.13 | 4           | 1         | TGG  |
|         |                        | Mouse chr.17 | 4           | 2         | TGG  |

### Experimental Procedures Supplemental Table: Predicted off-target effects of scCRISPR palindromic sgRNAs

| Palindromic sgRNA sequences |                       |                                                                  |  |  |
|-----------------------------|-----------------------|------------------------------------------------------------------|--|--|
| sgPal1                      | GCTCTGTGACTAGTCACAGAG | Among most efficient, used<br>for the majority of<br>experiments |  |  |
| sgPal2                      | GCGGAACACATGTGTTCCG   |                                                                  |  |  |
| sgPal3                      | GTCGATCGTCGCGACGATCGA |                                                                  |  |  |
| sgPal4                      | GCGACGATCGATCGTCG     |                                                                  |  |  |
| sgPal5                      | GCAGTACTTTGCAAAGTACTG |                                                                  |  |  |
| sgPal6                      | GTCCCATCCTTAAGGATGGGA |                                                                  |  |  |
| sgPal7                      | GGCTTAGTACTAGTACTAAGC | Most efficient                                                   |  |  |
| sgPal8                      | GGCCTTTCGACGTCGAAAGGC | Among most efficient                                             |  |  |
| sgPal9                      | GCGACCTGCATATGCAGGTCG |                                                                  |  |  |
| sgPal10                     | GAATCTGCCAGCTGGCAGATT | Among most efficient                                             |  |  |

## Experimental Procedures Supplemental Tables: Oligonucleotides used in this work

| sgRNA sequences for plasmid control tests |                       |  |  |  |
|-------------------------------------------|-----------------------|--|--|--|
| sgGFP3                                    | GCTGAAGCACTGCACGCCGT  |  |  |  |
| sgHist1h3a                                | GTTAATTCCGTAGAACTGTA  |  |  |  |
| sgNanog                                   | GTATGAGACTTACGCAACATC |  |  |  |

| scCRISPR primer sequences |                                               |                          |  |  |  |
|---------------------------|-----------------------------------------------|--------------------------|--|--|--|
|                           | TGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTA  |                          |  |  |  |
|                           | TTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA  | Use in first PCR of all  |  |  |  |
| scCRISPR_homology_fw      | CC                                            | scCRISPR oligos          |  |  |  |
|                           | GTTGATAACGGACTAGCCTTATTTAAACTTGCTATGCTGTTTCC  | Use in first PCR of all  |  |  |  |
| scCRISPR_homology_rv      | AGCATAGCTCTTAAAC                              | scCRISPR oligos          |  |  |  |
|                           | GTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTT  |                          |  |  |  |
| scCRISPR_homology_ext     | TGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTA  | Use in second PCR of all |  |  |  |
| ension_fw                 | CC                                            | scCRISPR oligos          |  |  |  |
|                           | ATTTTAACTTGCTATTTCTAGCTCTAAAACAAAAAGCACCGAC   |                          |  |  |  |
| scCRISPR_homology_ext     | TCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTAA  | Use in second PCR of all |  |  |  |
| ension_rv                 | AC                                            | scCRISPR oligos          |  |  |  |
|                           | CGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGT  |                          |  |  |  |
| scCRISPR_homology_do      | AAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAAT  | Use to produce long      |  |  |  |
| ubleextension_fw          | АА                                            | scCRISPR homology arms   |  |  |  |
| scCRISPR_homology_do      | TCAATGTATCTTATCATGTCTGCTCGATTTTAACTTGCTATTTCT | Use to produce long      |  |  |  |
| ubleextension_rv          | AGCTCTAAAACAAAA                               | scCRISPR homology arms   |  |  |  |

| scCRISPR sgRNA sequences                                                         |                       |  |  |  |
|----------------------------------------------------------------------------------|-----------------------|--|--|--|
| All scCRISPR oligonucleotides were ordered using format described in the methods |                       |  |  |  |
| sgGFP1                                                                           | GGGCGAGGAGCTGTTCACCG  |  |  |  |
| sgGFP2                                                                           | GAGCTGGACGGCGACGTAAA  |  |  |  |
| sgGFP3                                                                           | GCTGAAGCACTGCACGCCGT  |  |  |  |
| sgHist1h3a                                                                       | GTTAATTCCGTAGAACTGTA  |  |  |  |
| sgNanog                                                                          | GTATGAGACTTACGCAACATC |  |  |  |
| sgDsRed1                                                                         | GAACTCCTTGATGACGTCCT  |  |  |  |
| sgDsRed2                                                                         | GCCAAGCTGAAGGTGACCAA  |  |  |  |
| sgHIST1H2BJ                                                                      | GCGCTAAGTAAACAGTGAGT  |  |  |  |
| sgEsrrb                                                                          | GTGATGGCCCAGCACATGGA  |  |  |  |
| sgFam25c                                                                         | GGCCAGCCATGCTGGTAGGC  |  |  |  |
| sgGata6                                                                          | GCCTGAGCTGGTGCTACCAAG |  |  |  |
| sgKlf4                                                                           | GCACTTTTAAATCCCACGTAG |  |  |  |
| sgNfya                                                                           | GTTTCCTAACCACAGGAGGG  |  |  |  |
| sgRpp25                                                                          | GCTCAGAGGCGAGAATTCTC  |  |  |  |
|                                                                                  | GTGAGGGCTGGACTGCGAAC  |  |  |  |
| sgSox2                                                                           |                       |  |  |  |
| sgTdgf1                                                                          | GAGATGGGGTACTTCTCATCC |  |  |  |
| sgZfp42                                                                          | GAATGAACAAATGAAGAAAA  |  |  |  |
| sgXrcc6                                                                          | GGGCGAGGAAGAGGAAGAGG  |  |  |  |
| sgXrcc5                                                                          | GCATCACCCTTGTCACCATG  |  |  |  |
| sgXrcc4                                                                          | GATGACATGGCTATGGAGAA  |  |  |  |
| sgPrkdc                                                                          | GAGAGTAATGCATAACCTTC  |  |  |  |
| sgDclre1c                                                                        | GCAGATATCTTTAGTTGATG  |  |  |  |
| sgLig4                                                                           | GAAAGAGAGAGGATGGCTTA  |  |  |  |
| sgParp1                                                                          | GTGGCCCACCTTCCAGAAGC  |  |  |  |
| sgXrcc1                                                                          | GTCCGCCTTGAGAAGATTTT  |  |  |  |
| sgNhej1                                                                          | GCCAGGCTCACACCCATCAG  |  |  |  |
| sgPnkp                                                                           | GACACTGTCCTCTACCGAGA  |  |  |  |
| sgRif1                                                                           | GAGACAAACCTTTATTACTT  |  |  |  |
| sgTdp1                                                                           | GTCAGCATCCTCTCACCCCC  |  |  |  |
| sgTrp53bp1                                                                       | GAATCTTCTATTATCAGGCA  |  |  |  |

| gBlock-CRISPR              |                                                   |                       |  |  |  |  |  |
|----------------------------|---------------------------------------------------|-----------------------|--|--|--|--|--|
|                            |                                                   | Use in PCR of all     |  |  |  |  |  |
| gBlock-CRISPR_fw           | TGAGTATTACGGCATGTGAGGGC                           | gBlock-CRISPR gBlocks |  |  |  |  |  |
|                            |                                                   | Use in PCR of all     |  |  |  |  |  |
| gBlock-CRISPR _rv          | TCAATGTATCTTATCATGTCTGCTCGA                       | gBlock-CRISPR gBlocks |  |  |  |  |  |
|                            | Homologous recombination primers                  |                       |  |  |  |  |  |
|                            | GGACATCCAACTGGCCCGCCGCATCCGCGGGGAGAGGGGCG         |                       |  |  |  |  |  |
| Hist1h3aHDR_GFP_fw         | GTGAGCAAGGGCGAGGAGCT                              |                       |  |  |  |  |  |
|                            | AAATCGTGTGTGGCTCTGAAAAGAGCCTTTGGTTAATTCC          |                       |  |  |  |  |  |
| Hist1h3aHDR_GFP_rv         | TGAGGAGTGAATTGCGGCCG                              |                       |  |  |  |  |  |
| Hist1h3aHDR_Extension      | TGTGCGCCATCCACGCCAAGCGTGTCACCATCATGCCCAAGGACA     |                       |  |  |  |  |  |
| _fw                        | TCCAACTGGCCCGCC                                   |                       |  |  |  |  |  |
| Hist1h3aHDR_Extension      | TTCGTTTAAGGATGGAGTAAATTACAGCCATTTTACTTGAAATC      |                       |  |  |  |  |  |
| _rv                        | GTGTGTGGCTCTGAAA                                  |                       |  |  |  |  |  |
|                            | ATTATTCCTGAACTACTCTGTGACTCCACCAGGTGAAATA          |                       |  |  |  |  |  |
| NanogHDR_GFP_fw            | GTGAGCAAGGGCGAGGAGCT                              |                       |  |  |  |  |  |
|                            | GAAGGAACCTGGCTTTGCCCTGACTTTAAGCCCAGATGTT          |                       |  |  |  |  |  |
| NanogHDR_GFP_rv            | TGAGGAGTGAATTGCGGCCG                              |                       |  |  |  |  |  |
| NanogHDR_Extension_f       | CCATGCGCATTTTAGCACCCCACAAGCCTTGGAATTATTCCTGAA     |                       |  |  |  |  |  |
| W                          | CTACTCTGTGACTCC                                   |                       |  |  |  |  |  |
| NanogHDR_Extension_r       | aataaatctttaaaaaaaaTATGAAAATATTTGGAAGAAGGAAGGAACC |                       |  |  |  |  |  |
| V                          |                                                   |                       |  |  |  |  |  |
|                            | CGAGGGTACTAAGGCCGTCACCAAGTACACCAGCGCTAAG          |                       |  |  |  |  |  |
| HIST1H2BJHDR_GFP_fw        |                                                   |                       |  |  |  |  |  |
|                            | GGTGGCTCTTAAAAGAGCCGTTAGGGTTGAGAGTTTGCAA          |                       |  |  |  |  |  |
| HISTIH2BJHDR_GFP_rv        |                                                   |                       |  |  |  |  |  |
| HIST IHZBJHDK_EXTENSI      |                                                   |                       |  |  |  |  |  |
| UILIW                      |                                                   |                       |  |  |  |  |  |
| on ry                      | CTCTTAAACACCCCCT                                  |                       |  |  |  |  |  |
| 011_1 V                    |                                                   |                       |  |  |  |  |  |
| Fsrrh GFP fw               | GCAAGGGCGAGGAGCT                                  |                       |  |  |  |  |  |
|                            | CGAGGCTGGTGGCTGTGGAGGTCTCCACTTGGATCGTGTC          |                       |  |  |  |  |  |
| <i>Esrrb_</i> GFP_rv       | TGAGGAGTGAATTGCGGCCG                              |                       |  |  |  |  |  |
|                            | ACACTTCTACAGTGTGAAACTGCAGGGCAAGGTGCCCATGCACA      |                       |  |  |  |  |  |
|                            | AACTCTTCCTGGAGAT                                  |                       |  |  |  |  |  |
| <i>Esrrb</i> _Extension_fw |                                                   |                       |  |  |  |  |  |
|                            | CTGGGACAGCTCAGAGCCCCCGATGCGGGTGTGAAAAAAGTCGAG     |                       |  |  |  |  |  |
| Esrrb_Extension_rv         |                                                   |                       |  |  |  |  |  |
| Environ CED (m             |                                                   |                       |  |  |  |  |  |
| Fam25C_GFP_IW              |                                                   |                       |  |  |  |  |  |
| Eam2Ea CED wy              |                                                   |                       |  |  |  |  |  |
| Fum25C_GFP_IV              |                                                   |                       |  |  |  |  |  |
|                            |                                                   |                       |  |  |  |  |  |
| Fam25c Extension fw        |                                                   |                       |  |  |  |  |  |
|                            | ATTCCATCCAAACAGAGGTAAACTCAGGACTCTGTTCACGTTTC      |                       |  |  |  |  |  |
| Fam25c_Extension_rv        | ACACTCTTTATTGACC                                  |                       |  |  |  |  |  |
|                            | CTCCGTGCGACAGGATTCTTGGTGTGCTCTGGCCCTGGCC          |                       |  |  |  |  |  |
| Gata6_GFP_fw               | GTGAGCAAGGGCGAGGAGCT                              |                       |  |  |  |  |  |
| Cata ( CED and             | AATATCAGACACAAGTGGTATGAGGCCTTCAGAGCCCTCC          |                       |  |  |  |  |  |
| Gata6_GFP_rv               | TGAGGAGTGAATTGCGGCCG                              |                       |  |  |  |  |  |

|                      | CATAGGTGTCAGTCTGTCCTCCCCTGCCGAAGTCACATCCTCCGT |  |
|----------------------|-----------------------------------------------|--|
| Gata6 Extension fw   | GCGACAGGATTCTTG                               |  |
|                      | GTCTGCATTTTTGCTGCCATCTGGACTGCTGGACAATATCAGAC  |  |
| Gata6 Extension rv   | ACAAGTGGTATGAGGC                              |  |
|                      | CAGGTCGGACCACCTTGCCTTACACATGAAGAGGCACTTTGTGA  |  |
| Klf4 GFP fw          | GCAAGGGCGAGGAGCT                              |  |
|                      |                                               |  |
| <i>Klf4_</i> GFP_rv  | TGAGGAGTGAATTGCGGCCG                          |  |
|                      | ACCGGCCCTTTCAGTGCCAGAAGTGTGACAGGGCCTTTTCCAGGT |  |
| Klf4_Extension_fw    | CGGACCACCTTGCCT                               |  |
|                      | TCCCCTCGTGGGAAGACAGTGTGAAAGGTTAGAAAAAAAA      |  |
| Klf4 Extension rv    | TGAACTCTCTCCTG                                |  |
| )                    | AGCTGACGAAGAAGCCATGACACAGATCATCCGAGTTTCCGTGA  |  |
| Nfva GFP fw          | GCAAGGGCGAGGAGCT                              |  |
|                      | CCATTTCCAGAACAGTGGAGAGGACCGTGACTGATCAGCT      |  |
| <i>Nfya_</i> GFP_rv  | TGAGGAGTGAATTGCGGCCG                          |  |
|                      | AGGACTGTTGTGCTGTCTCTCTGTAGGATCCAAACCAAGCTG    |  |
| Nfva Extension fw    | ACGAAGAAGCCATGAC                              |  |
|                      | AGTGAGACTGTCAGTGCCCCACTGGAAGTCAGTCCATTTCCAGA  |  |
| Nfva Extension rv    | ACAGTGGAGAGGACCG                              |  |
|                      | TCAGCCTGAGCCAGAGGCTGAGAATGAGGACAGGACCGCC      |  |
| Rnn25 GFP fw         | GTGAGCAAGGGCGAGGAGCT                          |  |
| 10020_011_10         | GTGTTGAAGATATATGATTCAGTCGGTCTGGGTGGCTCAG      |  |
| Rnn25 GEP ry         | TGAGGAGTGAATTGCGGCCG                          |  |
| 10025_011_1          |                                               |  |
| Pnn25 Extension fu   |                                               |  |
| hpp25_Extension_iw   |                                               |  |
| Dun 25 Extension w   |                                               |  |
| Kpp25_Extension_iv   |                                               |  |
| Sox2 GFP fw          |                                               |  |
|                      | CCTCCCAATTCCCTTGTATCTCTTTGAAAATCTCTCCCCT      |  |
| Sox2_GFP_rv          | TGAGGAGTGAATTGCGGCCG                          |  |
|                      | GACTGCACATGGCCCAGCACTACCAGAGCGGCCCGGTGCCCGGCA |  |
| Sox2_Extension_fw    | CGGCCATTAACGGCA                               |  |
|                      | ATTATCAGATTTTTCCTACTCTCCTCTTTTTGCACCCCTCCCAAT |  |
| Sox2_Extension_rv    | TCCCTTGTATCTCTT                               |  |
|                      | TTGTCTTTTCCTCCAACGTTTTTACGAGCCGTCGAAGATG      |  |
| <i>Tdgf1_</i> GFP_fw | GCTAGCAAAGGAGAAGAACT                          |  |
|                      | AAGTGGCTATCTCCAGCAACCAAAAAGTCAAGGTTA          |  |
| <i>Tdgf1_</i> GFP_rv | TCGCGATTTTACCACATTTGTAGA                      |  |
|                      | TGGCTTTATGAACTAAAGCCATCTGCTAATATTGTGTTTCTTGT  |  |
| Tdgf1_Extension_fw   | CTTTTCCTCCAACGTT                              |  |
|                      | GCAAGACAAAAATCAGAGCGTCATAGAACGTGATTTTCCGAAGT  |  |
| Tdgf1_Extension_rv   | GGCTATCTCCAGCAAC                              |  |
|                      | AGGAAGCAGCTAAGACAACATGAATGAACAAAAAATGAAT      |  |
| <i>Zfp42_</i> GFP_fw | GTGAGCAAGGGCGAGGAGCT                          |  |
|                      | GGGCTCTTCCGCCCGGCCCTTTCTGGCCACTTGTCT          |  |
| <i>Zfp42_</i> GFP_rv | TCGCGATTTTACCACATTTGTAGA                      |  |
|                      | GATCAGTGCCCCCTGGAAGTGAGTCATAGGCATTGTTCAAGAAG  |  |
| Zfp42_Extension_fw   | GAAGCAGCTAAGACAA                              |  |
|                      | ACTGGCCTTGCCTCGTCTTGCTTTAGGGTCAGTCTGTCGAGGGCT |  |
| Zfp42_Extension_rv   | CTTCCGCCCGGCCCT                               |  |

| Primers for sequencing |                       |  |  |  |
|------------------------|-----------------------|--|--|--|
| Hist1h3a-GFP_fw        | CCTTGTGGGTCTGTTTGAGGA |  |  |  |
| GFP_rv                 | GTCTTTGCTCAGGGCGGACT  |  |  |  |