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ABSTRACT

Here, we introduce a semi-analytic approach to purely Coulomb-induced carrier multiplication to be able to study its fluence
and doping dependence. Furthermore, we discuss the impact of the dynamical screening on the Coulomb interaction in doped
graphene samples.

Semi-analytic approach to purely Coulomb-induced carrier multiplication
To be able to find optimal excitation conditions and the doping regime for (hot) carrier multiplication, we present a semi-
analytical approach considering the purely Coulomb-induced carrier dynamics within statistical methods.1

Here, we focus on the carrier multiplication (CM), but the processes of hot carrier multiplication can be treated in an
analogous way. Our approach is to evaluate the total carrier density n and the energy density E of the electronic system:
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Assuming a Fermi distribution with εF 6= 0 for the carrier occupation ρλ
k , we obtain the carrier and energy density as a function

of the temperature T and the Fermi level εF :
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where Lin(.) denotes the polylogarithm function.
After an optical excitation, the electronic system is described by the carrier density nexc = n0 +nopt and the energy density

Eexc = E0 +Eabs. Here, Eabs denotes the absorbed pump fluence and nopt = 2Eabs/h̄ω the optically excited carrier density with
the photon energy h̄ω . Furthermore, the thermal densities n0 = n(T0,εF) and E0 = E (T0,εF) are determined by the initial
temperature T0 and Fermi level εF . To access the CM factor we need to know the final state of the carrier system after the
Coulomb-induced thermalization. We exploit the fact that the Coulomb dynamics conserves the total energy density. Due to
Auger processes, the total carrier density is not conserved, but instead the Fermi level. Using Eq. (3), we are able extract the
final temperature Tf of the hot thermalized system by numerical variation with the condition that E (Tf ,εF) = Eexc. Having the
final temperature, we can also access the final carrier density n f = n(Tf ,εF) and therewith also the CM factor, cf. Eq. (1) in the
main manuscript. For undoped graphene, the purely Coulomb-induced Tf , n f , and CM can be obtained analytically.1 Note
however that the approach does not include carrier-phonon scattering, which cannot be treated statically. Nevertheless, Fig. 1
shows an excellent agreement between the analytically [cf. Eqs. (2)-(3)] and numerically [cf. Eqs. (1)-(3) in the main part]
obtained doping-dependent carrier multiplication at a fixed pump fluence of εabs = 0.1 µJcm−2. The higher the Fermi level, the
smaller is CM, and the larger is hCM. For highly doped graphene samples with εF > 0.4eV, CM becomes smaller than 1. In
contrast, hCM reaches values of almost 5. The same qualitative dependence on doping is found by numerically evaluating
the graphene Bloch equations (shown in the main part), which also include the carrier-phonon coupling. This demonstrates
that the presented semi-analytical approach already sufficiently covers the most important aspects of doping-dependent carrier
multiplication. For quantitative insights and time-dependent CM, the full microscopic approach is required.
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Figure 1. Analytically obtained CM and hCM as a function of doping at a fixed pump fluence (solid line) of
εabs = 0.1 µJcm−2 compared to the numerical solution (dots) obtained by evaluating the graphene Bloch equations presented in
the main manuscript.

Fluence dependence of carrier multiplication
Now, based on the semi-analytical approach presented in the last section, we discuss the impact of the excitation strength on the
appearance of the CM and hCM. Figures 2(a) and 3(a) show surface plots illustrating doping and fluence dependence of CM
and hCM at 300 K and at an excitation energy of 1.5 eV, respectively. Our calculations demonstrate that both CM and hCM
are strongly suppressed in the strong excitation regime. For pump fluences higher than approximately 5 µJcm−2 (hot) carrier
multiplication does not occur any more. The larger the pump fluence, the more scattering partners are available giving rise to a
faster carrier dynamics.2 As a result, the thermalized distribution is reached within the first tens of fs and the asymmetry of
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Figure 2. (a) Carrier multiplication (CM) as a function of Fermi level and pump fluence at room temperature and at an
excitation energy of 1.5 eV. (b) Doping-dependent CM for three representative pump fluences and (c) fluence-dependent CM
for three fixed Fermi levels.
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Figure 3. The same as in Fig. 2, however illustrating doping and fluence dependence of the hot carrier multiplication (hCM).

impact excitation and Auger recombination rates vanishes much faster. As a result, carrier multiplication clearly decreases at
enhanced pump fluences, cf. Figs. 2(c) and 3(c) Furthermore, Figs. 2(b) and 3(b) also illustrate the decrease (increase) of CM
(hCM) with the Fermi level, as already discussed in the main manuscript.

Dynamical screening
The efficiency of Auger processes is sensitive to the dynamical screening of the Coulomb interaction that is expressed by the
Lindhard equation:3

ε(q,ω) = 1−2Vq ∑
λλ ′k

ρλ ′
k+q−ρλ

k

ελ ′
k+q− ελ

k + h̄ω + iδ λ
k,q

Γ
λλ ′
k,q , (4)

where ω corresponds to the energy transfer of the scattering processes and the factor Γλλ ′
k,q = |

∫
d3rΨλ∗

k (r)eiq·rΨλ ′
k−q(r)|2

includes the tight-binding wave functions Ψλ
k (r).

The appearing momentum-dependent dephasing δ λ
k,q can be derived from the dynamics of inhomogeneous charge fluctua-

tions 〈ρ̃q〉=− |e|L3 ∑k〈a†
k−qak〉=− |e|L3 ∑k σk−q,k,. The corresponding equation of motion reads:3

d
dt

σk−q,k =
i
h̄
(εk−q− εk)σk−q,k +

iVq

h̄
(ρk−ρk−q)∑

k′
σk′−q,k′ . (5)

Using the ansatz σk−q,k(t) = e−i(ω+iδ )tσk−q,k(0), a solution for σk−q,k can be obtained and leads to the dynamical screening
expressed by the Lindhard formula with a fluence-dependent dephasing δ λ

k,q, cf. Eq. (4) in the main text. To obtain the
momentum-dependent δ λ

k,q, we write the in-coherent equation of motion for the electron charge density in second-order
Born-Markov approximation:3

d
dt

σk−q,k|nc =−
π

h̄ ∑
ABCD

Ṽ AB
CD δ (εD + εC− εB− εA)

[
∑
bcd

V kb
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Adσ

+
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+
bC)

−∑
abd

V a b
k−qd(σaDσbCσ

+
Adσ

+
Bk−σAdσBkσ

+
aDσ

+
bC)
]
.
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This equation contains the momentum-dependent dephasing term, which is given by d
dt σk−q,k|nc ∝ δk,qσk−q,k. Neglecting all

polarization terms σab→ ρa, the dephasing δk,q yields:

δ
λ
k,q = Sin,λ

k,q +Sout,λ
k,q (6)

with the in- and out-scattering rates

Sin,λ
k,q =

π

h̄ ∑
abc

(
V k λ kcλc

kaλakbλb
Ṽ kaλakbλb

k λ kcλc
+V k−qλkcλc

kaλakbλb
Ṽ kaλakbλb

k−qλkcλc

)
[1−ρa]ρbρcδ (ελ

k + εa + εb + εc),

Sout,λ
k,q =

π

h̄ ∑
abc

(
V k λ kcλc

kaλakbλb
Ṽ kaλakbλb

k λ kcλc
+V k−qλkcλc

kaλakbλb
Ṽ kaλakbλb

k−qλkcλc

)
ρa[1−ρb][1−ρc]δ (ε

λ
k + εa + εb + εc)

that also directly appear in the graphene Bloch equations, cf. Eq. (1) in the main part of the manuscript. Calculating these
scattering rates, we have also a consistent access to the dephasing term influencing the dynamical screening of the Coulomb
interaction. Note that a vanishing dephasing would suppress the parallel Auger scattering contributions in graphene due to
a diverging ε(q,ω).4 However, in realistic cases the many-particle processes lead to a significant dephasing opening up the
Auger channels for the carrier relaxation.5
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