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File S2: 

Expected offspring heterozygosity under central vs. terminal fusion 

Expected heterozygosity H(d) at a distance d (in Morgan) from the centromere can be 

computed in two steps. The first step is to derive expected heterozygosity H(x) for any fixed 

number x of crossovers between the marker and the centromere. This can be obtained by 

recurrence. Under terminal fusion, we have 

 

𝐻(𝑥 + 1) = 1 − 𝐻(𝑥) + 𝐻(𝑥)/2 (A1) 

 

Indeed, if the marker was homozygous (1-H(x)), it becomes heterozygous with an additional 

crossing over, and if it was already heterozygous, there is only one chance over two that it 

will remain heterozygous with an additional crossing over (H(x)/2). Hence, with H(0) = 0 

(i.e., terminal fusion), we obtain  
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This function oscillates (0, 1,
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, ….) and stabilizes at 2/3 after many cross-overs. 

(Note that heterozygosity under central fusion can be obtained from the result under terminal 

fusion noting that Hcf = 1 – Htf /2 and that Hcf(0) = 1; Engelstädter et al. 2011). The second 

step is to assume that, in absence of interference, the number of crossovers X over a distance d 

follows a Poisson distribution with mean 2d (recalling that 0.5 Morgan corresponds to one 

cross-over). We obtain  

 

𝐻(𝑑) = ∑ 𝑃(𝑋 = 𝑥)
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where 𝑃(𝑋 = 𝑥) is given by the Poisson distribution. We find 

 

𝐻(𝑑) =
2

3
(1 − 𝑒−3𝑑) (A4) 
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(Engelstädter et al. 2011). The equivalent result under central fusion is  

 

𝐻(𝑑) = 1 −
1

3
(1 − 𝑒−3𝑑) (A5) 

 

(Rizet and Engelmann 1949; Barratt et al. 1954). In order to compute H(d) in presence of 

interference, we propose here to use Conway-Maxwell Poisson distribution (Sellers et al. 

2012) that generalizes the Poisson distribution allowing for over or underdispersion (positive 

interference corresponding to underdispersion). This distribution adds a parameter  to 

control for the level of dispersion. Its probability density function is   

𝑃(𝑋 = 𝑥) =
𝜆𝑥

𝑍(𝜆, 𝜈)(𝑥!)𝜈
 (A6) 

 

where 𝑍(𝜆, 𝜈) is a normalization equal to ∑ 𝜆𝑥 (𝑥!)𝜈⁄𝑥 , which can be expressed using the 

generalized hypergeometric function   

 

𝑍(𝜆, 𝜈) =  𝐹0 𝜈−1(∅, 𝟏, 𝜆), (A7) 

 

where 1 is a vector of 1 of dimension -1. Using the probability density (A7) in Eq. (A6) 

yields an heterozygosity function H(d) for various degree of interference. This is illustrated in 

Figure 1. Strong interference leads to a non-monotonic mapping function as more evenly 

spaced cross over events will cause H(d) to reflect the oscillatory behavior of H(x) (Eq. A2). 

All mapping functions have a slope of two at d=0 and tend to 2/3 for large d. Non 

monotonicity arises as soon as there is interference, but it becomes noticeably large for 𝜈 ≥ 2. 

This method can also be applied to obtain a standard mapping function M(d) expressing the 

recombination fraction as a function of the genetic distance. For instance using the Mather 

formula (Mather 1935) 

 

𝑀(𝑑) =
1

2
(1 − 𝑃(𝑋 = 0)) =

1

2
(1 − 𝑍(𝜆, 𝜈)−1) (A8) 

 

In both cases, the mapping requires to express H(d) or M(d) not in terms of  the parameter of 

the COM-Poisson distribution, but in terms of d (which is half the expected number of cross 

over, i.e. half the mean of the COM-Poisson distribution). Here again, the mean of the COM-
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Poisson can be expressed in terms of generalized hypergeometric functions, but a simpler 

approximation is sufficient for most purposes: 

 

𝐸(𝑋) = 2𝑑 = (1 − 𝑒−2𝜆) (𝜆1 𝜈⁄ −
𝜈 − 1

2𝜈
) + 𝜆𝑒−4𝜆 (A9) 

 

Supporting Figure S2 illustrates this mapping. The case corresponds to Haldane 

mapping, while  is close to the Kosambi mapping used in Drosophila (Chen 2013). Note 

that heterozygosity with interference has already been treated by Barratt et al. (1954) for the 

case of central fusion, however using a less general model (necessitating more restrictive 

assumptions) than the models based on the COM-Poisson distribution (see also, Nace et al. 

1970; Zhao and Speed 1998). The latter and other count models (e.g., Zhao et al. 1995) are 

increasingly used also to model interference in classical genetic mapping (e.g., Choi et al. 

2013). 
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