| Phage mutant   | Primer 1 (5'-3')   | Primer 2 (5'-3')               | Primer 3 (5'-3')    |
|----------------|--------------------|--------------------------------|---------------------|
| ΔmodA          | GACTCCCAAGCTTGCGCC | GGATGCATCGGTGCGTGCTTCTATTCGGA  | ATCTTGCAGATGTTGAACA |
|                | TTCTGCTATG         | AGTAATGATACCAGCTGGAAGTG        | GT                  |
| Δsrd           | ACGCGTCGACTCATCGTA | CGTTTAGAGCATACTCAGGCATCTGCCTGA | ACGCGTCGACATTGAGGT  |
|                | AATTC              | AAAGAGGATATCCGCTAAATTG         | AGTTG               |
| ∆dda-dda.1     | ACGCGTCGACTTATCGTT | GCGATAGTTTACCGAGACAAAGACGGTGT  | ACGCGTCGACGTAAGATG  |
|                | TTGTTG             | CACCCGTGGTCGTTATGATGTG         | TGAGAA              |
| ∆dexA.1-dexA.2 | ACGCGTCGACTTATCGTT | GGAAGCTATTCGTGGAAATAACTAAAGAG  | ACGCGTCGACCAATTGCA  |
|                | TTGTTG             | GTCAAATTCGTGATTTAGCGAGG        | GGGAAT              |
| ΔdexA          | ACGCGTCGACTTAGTTTA | GGGAAGTGGTGAAAAAGCAGCGGTTGGG   | ACGCGTCGACAAATTTGA  |
|                | AGGTA              | TCTTGAAGATGCTCCATCAGAGG        | GGAAG               |
| ∆motB.2        | TCAACGCCATCTTCCAAT | GACGCTATAACAATACGCCGAGATCTTGG  | GTACCGGAATTCCGATGA  |
|                | CCAT               | CGGGCATCAAGTAATGTTCCG          | ATTAGTTTC           |

## Table S1 Primers used for construction of deletion mutant phages in this study.



**Figure S1** Effect of deleted genes on T4-induced host mRNA degradation. MH1 (wild-type) cells were grown in M9C medium until the OD<sub>600</sub> reached 0.5 at 37°, and infected with T4 wild type,  $\Delta(39-56)_6$ ,  $\Delta dda-dda.1$ ,  $\Delta motB.2$ ,  $\Delta dexA$ ,  $\Delta modA$ ,  $\Delta dexA.1$ -dexA.2 or  $\Delta srd$  mutant phage. Total RNAs were extracted at the indicated times after infection and then analyzed by northern blotting with a probe for *lpp*. An arrowhead and an asterisk indicate full-length and a decay intermediate of *lpp* mRNA, respectively. Ethidium bromide-stained 5S rRNA or 23S/16S rRNA as a loading control is shown at the bottom of each panel. The  $\Delta srd$  mutant demonstrated that *lpp* mRNA was stabilized and that the decay intermediate was strongly accumulated, as with  $\Delta(39-56)_6$  mutant.

(A)



**Figure S2** Effect of Srd on stabilities of unstable mRNAs. MH1 (wild-type) cells were grown in M9C medium until the OD<sub>600</sub> reached 0.5 at 37°, and infected with wild type T4 or  $\Delta$ srd mutant or treated with rifampicin at a final concentration of 250 µg/ml. Total RNAs were extracted at the indicated times after infection or addition of rifampicin and then analyzed by northern blotting with an oligo-probe for *rpsO* (A, 5'-<sup>32</sup>P- TTGCTTCAGTACTTAGAGAC), *trxA* (B, 5'-<sup>32</sup>P- CTGTCGTCAGTCAGTGAATAATTTTATCGCTC) or *rpsT*(C, 5'-<sup>32</sup>P-

AGAGCGACGGCTTGCGTTGTGCTTACGAGCCTTTTCAGACTGAATGGCGC). The *rpsO*(P1-t1) mRNA corresponds to the monocistronic *rpsO* transcript while the *rpsO*(P1-RIII) mRNA generates from the processing of the *rpsO-pnp* bicistronic transcript by RNase III (Hajnsdorf *et al.* 1994). Asterisks in the figure (B) indicate multiple *trxA* transcripts. Ethidium bromide-stained 5S rRNA as a loading control is shown at the bottom of each panel. Half-lives ( $t_{1/2}$ ) with the mean ± SD of duplicate measurements are shown below the figure. Like *lpp* and *ompA* mRNAs, *trxA* and *rpsO*(P1-t1) mRNAs were destabilized after infection with wild-type T4 and this destabilization was recovered by the deletion of *srd*.



**Figure S3** The 5' end of truncated *lpp* RNA driven from a pBS*lpp*(T) plasmid. Five micrograms of total RNAs extracted from TY1001 ( $\Delta$ *lpp*::*kan*) cells harboring pBS*lpp*(T) treated with 1 mM IPTG for 10 min (lane 1), from MH1(wild-type) cells at 0 min (lane 2) or at 10 min (lane 3) after infection with  $\Delta$ *srd* mutant were used for primer extension analysis. FL or an asterisk denotes the full-length *lpp* mRNA or its decay intermediate, respectively. The 5' end of truncated *lpp* RNA expressed from pBS*lpp*(T) was identical to that of the decay intermediate of *lpp* mRNA accumulated in  $\Delta$ *srd* mutant-infected cells.



**Figure S4** Degradation of lpp(T) RNA under normal growth condition. (A) TY1001 ( $\Delta lpp::kan$ ) or TY1002 ( $\Delta lpp::kan$  ams1) cells harboring pBS/*pp*(T) were grown in LB medium until the OD<sub>600</sub> reached 0.3 at 30° and shifted to 44° for another 30 min. After cells were treated with 1 mM IPTG for 10 min to induce expression of lpp(T) RNA, total RNAs extracted at the indicated times after addition of rifampicin were subjected to northern blotting with a probe for *lpp*. The RNA with a sequence identical to the truncated intermediate of *lpp* mRNA is labeled as *lpp*(T)(upper panel). (B) Quantification analysis of *lpp*(T) RNA in the figure (A) was performed. Data points represent the mean ± SD of triplicate measurements. A half-life ( $t_{1/2}$ ) of each mRNA is shown below the figure (A). (C) TY1001 or TY1006 ( $\Delta lpp::kan \Delta rppH$ ) harboring pBS/*pp*(T) were treated with 1 mM IPTG for 10 min when the OD<sub>600</sub> reached 0.5 at 30°. Total RNAs extracted at the indicated times after addition of rifampicin were subjected to northern blotting with a probe for *lpp*. (D) Quantification analysis of *lpp*(T) RNA in the figure (C) was performed. Data points represent the mean ± SD of triplicate measurements. *lpp*(T) RNA in the figure (C) was performed. Data points represent the mean ± SD of triplicate measurements. *lpp*(T) RNA in the figure (C) was performed. Data points represent the mean ± SD of triplicate measurements. *lpp*(T) RNA in the figure (C) was performed. Data points represent the mean ± SD of triplicate measurements. *lpp*(T) RNA in the figure (C) was performed. Data points represent the mean ± SD of triplicate measurements. *lpp*(T) RNA was degraded by RNase E in RppH-dependent manner under normal growth condition.



**Figure S5** Amount of RNase E before and after T4 infection. TY1007 (*rne-FLAG-cat*) cells harboring pQ-orf2-95 were grown in LB medium until the OD<sub>600</sub> reached 0.3 and treated with 0.02 mM IPTG for 30 min to induce expression of IscR. Cells were harvested immediately before (0 min) or 5 min after T4 infection. Equal amount of cell extracts were electrophoresed through a 10% polyacrylamide gel containing SDS, followed by western blotting with antibodies against FLAG-tag and Histag. The amount of RNase E did not change after T4 infection.



**Figure S6** Semi-quantitative RT-PCR analysis to detect *srd* mRNA from T4 genome. Total RNAs from TY0807 cells harboring pBAD18-*srd* at 0 or 10 min after induction of 0.15% arabinose (lanes 1 and 2), or from MH1 cells after infection with wild-type phage (lanes 3 and 4) or  $\Delta srd$  mutant (lane 5) were used for RT-PCR. RT-PCR analyses for *srd* mRNA were performed by incubation at 42° for 50 min with 2 µg of total RNA, 80 units of ReverTra Ace reverse transcriptase (TOYOBO), 1 mM of dNTPs, and 2.5 pmol of *srd*-RT primer (5'-ACGCGTCGACTTATCCTCGGATAAG) in 10 µl of reverse transcription buffer. PCR amplification was performed with 0.2 mM dNTPs, 1 µl of reverse transcription mixture, 10 pmol of sense primer (5'-CGCATAGCAGAAGGCGCTGAAG) and antisense primer (5'-GCGGATATCCTCTTTTCAGTTT), and 1 unit of KOD Dash (TOYOBO) in 25 µl of PCR Buffer. A thermal cycle of 94° for 30 s, 54° for 15 s, and 72° for 20 s was repeated 15 times. The products were separated through a 5% polyacrylamide gel. Various amounts of pBAD18-*srd* were used as a template to demonstrate a semi-quantitative profile of PCR conditions; lane 6: 0.1 ng; lane 7: 0.5 ng; lane 8: 1 ng; lane 9: 2.5 ng; lane 10: 5 ng; lane 11: 10 ng. The level of *srd* mRNA during T4 infection was almost same as that derived from the plasmid.