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Methods	
	
Satellite‐linked	and	VHF	Tagging	
	
Seven dolphins were given a single tag in order to reduce handling time due to very poor health 

condition, unstable behavior during processing (e.g. abnormal heart rate and/or abnormal 

respirations), and/or later term pregnancy (2nd trimester or later). Two dolphins were outfitted 

with a single tag due to the small size of their dorsal fin. Two additional dolphins were not 

tagged at all: one because its dorsal fin was severely damaged from previous human interaction 

(entanglement and boat-strike), while the other was released prior to complete processing due to 

increasingly unstable behavior. Attachment of VHF and/or satellite-linked transmitters followed 

methods as described by Balmer et al. [1]. The satellite-linked tags were set to transmit during 

two four-hour ‘windows’ each day (02:00-05:59 and 08:00-11:59 local), based on ARGOS 

satellite pass prediction values, looking for satellites with >20o elevation for at least three 

minutes. Based on programmed transmission times and anticipated battery life, the tags were 

expected to transmit up to 240 tracking days.  

The Argos DCS uses multiple, polar-orbiting satellites to receive data from Argos tags and 

transmits these data to ground-based processing centers [2]. Tag locations were calculated using 

the Doppler Effect on transmission frequency and a location processing algorithm (Kalman 
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filtering) to provide higher numbers of accurate locations. Data were categorized into location 

classes (LCs) based upon estimated error: LC3, <250m; LC2, 250m-500m; LC1, 500m-1500m; 

LC0, >1500m. Only the highest LCs (LC3 and LC2) were used for plotting tagged animal 

locations. 

Vessel‐based	surveys	

Photographic-identification surveys for mark-recapture analysis 

In June 2010, intensive photo-ID surveys for mark-recapture analysis were initiated in Barataria 

Bay. Mark-recapture photo-ID surveys have been used extensively to estimate abundance and 

determine survivorship of small cetaceans within a given region [3-5]. The mark-recapture 

photo-ID surveys in Barataria Bay were based on a robust design [6], and each primary session 

included three traversals of a defined survey route [4] (Figure 1). In all, ten primary sessions 

were conducted from June 2010 through April 2014, six of which followed the 2011 health 

evaluations.  

Radio-tracking and freeze brand monitoring surveys 

Surveys were initiated in September 2011 specifically to re-sight dolphins sampled during the 

preceding health evaluations. The objective of these surveys was to maximize the chance of 

encountering one or more of the 32 sampled dolphins by focusing survey effort in areas utilized 

by the sampled animals. Ad hoc survey routes were determined daily based on weather, sighting 

conditions, recent satellite-linked transmitter locations, and sightings of freeze-branded 

individuals from prior photo-ID surveys.  

Surveys, each covering three days, were conducted at three, five, and ten weeks post capture-

release. Two, 4-element mast-mounted Yagi antennas [Advanced Telemetry Systems (ATS), 
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Isanti, MN, USA] attached to ATS R2000 scientific receivers were used to scan all tagged 

animal frequencies at 60-second intervals. Once a tag signal was received, observers on the 

tracking vessel would attempt to visually locate the tagged animal, obtain photos of it along with 

any associated dolphins, and record a GPS position. The goal within each three-day tracking 

interval was to visually locate and obtain photos of all tagged dolphins.  

Additional monitoring surveys were conducted following the expected transmission life of the 

VHF tags, with the primary objective to monitor tag migration and loss [1]. Animals were 

identified by the freeze brands applied during the health evaluations. These survey sessions, each 

lasting 3-5 days, were conducted in February, March, April, and May 2012. 

Reproductive outcome surveys 

Surveys specifically designed to document reproductive outcomes, utilizing photo-ID survey 

methods as described above and in greater detail by Melancon et al. [7], were conducted over 

one-week periods in June, July, and August 2012. The objective of these surveys was first to 

locate pregnant females from the August 2011 health evaluations (determined via ultrasound), 

and second to document the presence or absence of an accompanying neonate as they were 

expected to give birth in spring 2012. Survey routes were designed to provide coverage of areas 

encompassing previous sightings and recent satellite-linked locations of the targeted females. 

Additional surveys were conducted in April 2014, May 2014, May 2015 and July 2015. 
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R code to estimate CJS models 
 
Data Preparation: 
 
The following code sets up data for later MCMC sampling, and is common to all models.  Here, 

H32 is the 32 X 20 matrix of capture histories (Table 1).  I is a vector of interval lengths between 

occasions, computed as fractions of a year (I = [1  1  1  3  1  1  1  1  1  1  8  2  5  5  1  1 10  1  2] / 

12).  survHealth and survMRecap are matrices of indicators for Health Evaluation and Photo-ID 

survey types.  (survHealth[1,] = [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0], survMRecap[1,] = [0 0 0 

1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0]).  

 
F.fix.censors <- function(H){ 
  # Replace occasions after '2' in capture history with NA's.   
  for( i in 1:nrow(H)){ 
    if( sum(H[i,]==2, na.rm=T) > 0){ 
      col.with.2 <- (1:ncol(H))[H[i,]==2]   
      H[i,(col.with.2+1):ncol(H)] <- NA 
      H[i,col.with.2] <- 1 
    } 
  } 
  H 
} 
ch <- F.fix.censors(H32) 
 
#   Vector of first encounters 
get.first <- function(x) min(which(x!=0)) 
f <- apply(ch,1,get.first) 
 
#   Toss individuals first seen at last occasion (no information for CJS) 
ch <- ch[f!=ncol(ch),] 
f <- f[f!=ncol(ch)] 
 
sHealth <- survHealth[1,] 
sMRecap <- survMRecap[1,] 
ints <- I 
ns <- ncol(ch) 
nan <- nrow(ch) 

 
Utility function to execute MCMC chains and compute DIC: 
 
The following function is a copy of the coda.samples function contained in rjags, with the 
addition of DIC computation and modification to return a list object.  
 
coda.samples.dic <- function (model, variable.names = NULL, n.iter, thin = 1, 
...) 
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{ 
  load.module('dic') # necessary for pD and deviance monitor 
   
  start <- model$iter() + thin 
  varnames=c(variable.names, c('deviance', 'pD')) 
  out <- jags.samples(model, varnames, n.iter, thin, 
                      type = "trace", ...) 
  deviance <- out$deviance 
  pD <- out$pD 
  out$deviance <- NULL 
  out$pD <- NULL 
  nch<-model$nchain() 
  ans <- vector("list", nch) 
  for (ch in 1:nch) { 
    ans.ch <- vector("list", length(out)) 
    vnames.ch <- NULL 
    for (i in seq(along = out)) { 
      varname <- names(out)[[i]] 
      d <- dim(out[[i]]) 
      if (length(d) < 3) { 
        stop("Invalid dimensions for sampled output") 
      } 
      vardim <- d[1:(length(d) - 2)] 
      nvar <- prod(vardim) 
      niter <- d[length(d) - 1] 
      nchain <- d[length(d)] 
      values <- as.vector(out[[i]]) 
      var.i <- matrix(NA, nrow = niter, ncol = nvar) 
      for (j in 1:nvar) { 
        var.i[, j] <- values[j + (0:(niter - 1)) * nvar + 
                               (ch - 1) * niter * nvar] 
      } 
      vnames.ch <- c(vnames.ch, rjags:::coda.names(varname, vardim)) 
      ans.ch[[i]] <- var.i 
    } 
    ans.ch <- do.call("cbind", ans.ch) 
    colnames(ans.ch) <- vnames.ch 
    ans[[ch]] <- mcmc(ans.ch, start = start, thin = thin) 
  } 
  dic <- mean(as.vector(deviance)) + .5*var(as.vector(deviance)) 
  return(list(samples=mcmc.list(ans), dic=dic)) 
} 
  
 
JAGS code and execution: 
 
The following is JAGS code used to fit the {constant,constant} model. 
 
require(rjags)      
 
modelString = " 
model { 
  # Survival: Constant 
  #  Capture: Constant 
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  # Priors: 
  mean.phi ~ dunif( 0, 1 ) 
  mean.p ~ dunif(0,1) 
 
  # Constraints: 
  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- mean.phi^ints[j] 
      p[i,j] <- mean.p 
    } 
  } 
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
 
      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1] 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
"  
 
# Write the modelString to a file, using R commands: 
.temp = file("model.txt","w") ;  
writeLines(modelString,con=.temp) ;  
close(.temp) 
#--------------------------------------------------------------------------- 
dataList = list( 
  ch = ch , 
  f = f, 
  ints = ints, 
  ns = ns,  
  nan = nan 
) 
#---------------------------------------------------------------------------- 
# Initial values  
z = matrix(NA, nan, ns) 
for(i in 1:nan) { 
  indx = which(ch[i,]==1) 
  if( max(indx) > f[i]){ 
    z[i,(f[i]+1):max(indx)] = 1 
  } 
} 
initsList = list(z = z, mean.phi=0.85, mean.p=.5) 
#----------------------------------------------------------------------------
-- 
# Run chains. 
parameters = c( "mean.phi", "mean.p" )    
adaptSteps = 2000               
burnInSteps = 15000             
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nChains = 3                    
numSavedSteps=2000            
thinSteps=1                    
nIter = ceiling( ( numSavedSteps * thinSteps ) / nChains )  
 
source("coda.samples.dic.r")  # routine to compute dic, returns mcmc.object 
jagsModel = jags.model( "model.txt" , data=dataList ,  inits=initsList ,  
                        n.chains=nChains , n.adapt=adaptSteps ) 
cat( "Burning in the MCMC chain...\n" ) 
update( jagsModel , n.iter=burnInSteps ) 
cat( "Sampling final MCMC chain...\n" ) 
samples = coda.samples.dic( jagsModel , variable.names=parameters ,  
                            n.iter=nIter , thin=thinSteps ) 
 
Other models: 
 
Following are JAGS model statements for the remaining 5 models.  Remaining code for data, 
initial values, and model executions is nearly identical to the above with minor modification. 
 
model { 
  # Survival: Random Walk 
  #  Capture: Constant 
 
  # Priors: 
  PHI[1] ~ dunif( 0, 1 ) 
  mean.p ~ dunif(0,1) 
  sigma.phi ~ dunif(0,10) 
   
  # Constraints: 
  mu.phi[1] <- log(PHI[1]/ (1-PHI[1])) 
  for(j in 2:(ns-1)){ 
    mu.phi[j] <- mu.phi[j-1] + epsilon[j] 
    logit(PHI[j]) <- mu.phi[j]  
  } 
  tau <- pow(sigma.phi,-2) 
   
  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- PHI[j]^ints[j] 
      p[i,j] <- mean.p 
    } 
  } 
  for(j in 2:(ns-1)){ 
    epsilon[j] ~ dnorm(0,tau) 
  } 
   
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
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      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1] 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
------------------------------------------------------------ 
model { 
  # Survival: Constant 
  #  Capture: Random Walk 
 
  # Priors: 
  P[1] ~ dunif( 0, 1 ) 
  mean.phi ~ dunif(0,1) 
  sigma.p ~ dunif(0,10) 
   
  # Constraints: 
  mu.p[1] <- log(P[1]/ (1-P[1])) 
  for(j in 2:(ns-1)){ 
    mu.p[j] <- mu.p[j-1] + epsilon[j] 
    logit(P[j]) <- mu.p[j]  
  } 
  tau <- pow(sigma.p,-2) 
   
  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- mean.phi^ints[j] 
      p[i,j] <- P[j] 
    } 
  } 
  for(j in 2:(ns-1)){ 
    epsilon[j] ~ dnorm(0,tau) 
  } 
   
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
       
      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1] 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
------------------------------------------------------------ 
model { 
  # Survival: Random Walk 
  #  Capture: Random Walk 
 
  # Priors: 
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  P[1] ~ dunif( 0, 1 ) 
  PHI[1] ~ dunif(0,1) 
  sigma.phi ~ dunif(0,10) 
  sigma.p ~ dunif(0,10) 
   
  # Constraints: 
  mu.phi[1] <- log(PHI[1]/ (1-PHI[1])) 
  mu.p[1] <- log(P[1]/ (1-P[1])) 
 
  for(j in 2:(ns-1)){ 
    mu.phi[j] <- mu.phi[j-1] + epsilon.phi[j] 
    logit(PHI[j]) <- mu.phi[j]  
    mu.p[j] <- mu.p[j-1] + epsilon.p[j] 
    logit(P[j]) <- mu.p[j]  
  } 
 
  tau.phi <- pow(sigma.phi,-2) 
  tau.p <- pow(sigma.p,-2) 
 
  for(j in 2:(ns-1)){ 
    epsilon.phi[j] ~ dnorm(0,tau.phi) 
    epsilon.p[j] ~ dnorm(0,tau.p) 
  } 
 
  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- PHI[j]^ints[j] 
      p[i,j] <- P[j]  # Actually, capture prob at occasion j+1 
    } 
  } 
   
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
       
      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1]  # p[i,j-1] = P(capture at occasion j) 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
------------------------------------------------------------ 
model { 
 
  # Survival: Random Effects 
  #  Capture: Survey type 
   
  # Priors: 
  mu.mean.phi ~ dnorm( 2, 3.5 ) 
  sigma ~ dunif(0,10) 
  for(i in 1:3){ 
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    beta[i] ~ dnorm(0,10) 
  } 
   
  # Constraints: 
  tau <- pow(sigma,-2) 
  for(j in 1:(ns-1)){ 
    mu.phi[j] ~ dnorm( mu.mean.phi, tau ) 
    logit(PHI[j]) <- mu.phi[j] 
  } 
 
  for(j in 1:(ns-1)){ 
    mu.p[j] <- beta[1] + beta[2]*sHealth[j] + beta[3]*sMRecap[j] 
  }   
   
  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- PHI[j]^ints[j] 
      logit(p[i,j]) <- mu.p[j] 
    } 
  } 
 
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
       
      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1] 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
------------------------------------------------------------ 
model { 
 
  # Survival: Constant 
  #  Capture: Survey type 
   
  # Priors: 
  mu.mean.phi ~ dnorm( 2, 3.5 ) 
  for(i in 1:3){ 
    beta[i] ~ dnorm(0,10) 
  } 
   
  # Constraints: 
  for(j in 1:(ns-1)){ 
    logit(PHI[j]) <- mu.mean.phi 
  } 
   
  for(j in 1:(ns-1)){ 
    mu.p[j] <- beta[1] + beta[2]*sHealth[j] + beta[3]*sMRecap[j] 
  }   
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  for( i in 1:nan ){ 
    for( j in f[i]:(ns-1)){ 
      phi[i,j] <- PHI[j]^ints[j] 
      logit(p[i,j]) <- mu.p[j] 
    } 
  } 
   
   
  # Likelihood: 
  for( i in 1:nan ){ 
    # Latent state at first encounter 
    z[i,f[i]] <- 1 
    for ( j in (f[i]+1):ns ) { 
      # State process 
      phi.eff[i,j] <- z[i,j-1]*phi[i,j-1] 
      z[i,j] ~ dbern(phi.eff[i,j]) 
       
      # Observation process 
      p.eff[i,j] <- z[i,j] * p[i,j-1] 
      ch[i,j] ~ dbern( p.eff[i,j] ) 
    } 
  } 
} 
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Figure S1. Timing and types of surveys used in the survival and reproductive outcome analysis. 
Numbers above each symbol represent the number of surveys conducted in each month. 
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Table S1. Summary information for individual dolphins monitored following the 2011 health evaluations in Barataria Bay, LA. 
Criteria for overall prognosis, lung disease, and hematological and serum biochemical panels were defined in Schwacke et al. [8]. A 
“1” indicates the individual was classified as out-of-range for the given panel, “0” indicates the individual was within normal range. 
*Indicates the serum aldosterone was below assay detection limit (5.5 pg/mL). 

FB Sex
Age 

(Years) Pregnant
Length 
(cm)

Weight 
(kg)

Overall 
Prognosis

Poor Body 
Condition

Lung 
Disease

Inflammation 
Panel Hypoglycemia

Iron 
Panel

Hepatobiliary 
Panel Anemia

Aldosterone 
(pg/mL)

Cortisol 
(µg/dL)

Y05 F 16 0 251 154 grave  1 severe 1 1 0 1 1 5.5* 2.6
Y12 M 16 261 149 grave  1 severe 1 0 0 1 1 23.9 2.35
Y29 F 0 217 0 0 0 0 0 5.5* 2.69
Y35 F 1 224 good normal 0 0 0 0 0 5.5* 0.92
Y11 F 19.5 0 253 173 guarded severe 0 0 1 0 0 13.49 2.23
Y37 F 1 225 fair mild 1 0 0 0 0 5.5* 0.2
Y01 F 42 1 243 143 good normal 1 0 0 0 0 5.5* 1.59
Y02 M 17 263 201 guarded 0 mild 1 0 0 0 0 5.5* 0.34
Y10 M 258 191 poor 0 severe 0 1 1 0 0 5.5* 0.59
Y23 F 4 0 187 82 good 0 mild 0 0 0 0 0 5.5* 0.24
Y18 M 271 253 fair 0 mild 0 1 0 0 0 5.5* 0.93
Y25 F 1 239 0 0 0 0 0 13.22 0.27
Y06 M 4 210 114 fair 0 normal 0 0 0 0 0 5.5* 1.55
Y13 F 17 1 230 143 good normal 0 0 1 0 0 117.46 2.74
Y27 F 1 239 183 good 0 mild 0 0 0 0 0 48.72 1.86
Y00 M 8 232 130 good 1 mild 0 0 0 0 0 27.13 0.82
Y04 M 21 255 182 fair 0 mild 0 0 0 0 0 67.07 2.43
Y14 M 5.75 216 120 fair 0 normal 1 0 0 0 0 189.11 3
Y16 M 21 273 169 guarded 1 mild 1 1 0 1 0 5.5* 0.83
Y03 F 6.5 0 221 119 guarded 0 moderate 1 0 0 0 0 91.16 2.19
Y07 F 5 0 199 105 guarded 0 normal 1 0 0 0 1 133.03 3.56
Y08 M 13 274 202 1 0 0 0 0 0 5.5* 0.4
Y09 F 22 0 241 148 fair 0 moderate 0 0 1 0 0 37.99 0.89
Y15 F 3.75 0 198 88 guarded 0 normal 0 0 0 1 0 181.18 5.38
Y17 F 5 0 209 92 guarded 0 mild 1 0 0 0 0 5.5* 1.96
Y19 F 6 0 227 117 good 0 normal 0 0 0 0 0 132.09 2.84
Y20 M 21 267 240 fair 0 mild 0 0 0 0 0 5.5* 0.45
Y21 F 16 1 234 158 poor severe 0 1 0 0 0 25.69 1.22
Y22 M 12 234 150 fair 0 normal 1 1 1 1 0 38.93 1.37
Y31 F 1 239 175 poor 0 moderate 1 1 1 1 0 5.5* 1.78
Y33 F 1 228 156 guarded 0 moderate 0 0 0 0 1 5.5* 0.62
Y39 F 1 242 guarded moderate 1 0 1 0 0 5.5* 0.34

Hematological and Serum Biochemical Parameter Panels
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