Supplementary Information

Exploring RNA polymerase regulation by NMR spectroscopy

Johanna Drögemüller^{1,†}, Martin Strauß^{1,†}, Kristian Schweimer¹, Birgitta M. Wöhrl¹, Stefan H. Knauer^{1,*} & Paul Rösch¹

¹Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

[†] These authors contributed equally to this work

Contents

Supplementary Figure 1	2
Supplementary Figure 2	4
Supplementary Figure 3	5
Supplementary Figure 4	6
Supplementary Figure 5	7 8
Supplementary Figure 6	
Supplementary Figure 7	10
Supplementary Figure 8	11
Supplementary Methods	12
Supplementary References	18

Supplementary Figure 1: Purification of individual RNAP subunits. 2 µg protein were applied to each lane. S1, Precision Plus Protein Standard (BioRad, Munich, Germany); S2, PageRuler Low Range Protein Ladder (Thermo Scientific, Schwerte, Germany); SN, supernatant; P, pellet; PEI, polyethylenimine, AS, ammonium sulfate (a) 19 % (w/v) SDS-polyacrylamide gel of aliquots taken from the fractions during α subunit purification after staining with Coomassie Blue. (b) 10 % (w/v) SDS-polyacrylamide gel of aliquots taken from the fractions during β subunit purification after staining with Coomassie Blue. (c) 10 % (w/v) SDS-polyacrylamide gel of aliquots taken from the fractions during β ' subunit purification after staining with Coomassie Blue. (d) Schägger-Jagow gel¹ of aliquots taken from the fractions during ω subunit purification after staining with Coomassie

Blue. (e) 10 % (w/v) polyacrylamide gel of aliquots taken from the fractions during $\beta\beta$ ' complex purification after staining with Coomassie Blue.

Supplementary Figure 2: $[{}^{1}H, {}^{15}N]$ -HSQC spectrum of 300 μ M ${}^{15}N$ - ω . Positive and negative signals are colored in black and red, respectively.

Supplementary Figure 3: NusG-NTD does not interact with isolated α or ω . (a) 1D [¹H,¹⁵N]-HSQC spectra of 30 μ M NusG-NTD in the absence, black, and in the presence, red, of an equimolar concentration of α . (b) 2D [¹H,¹⁵N]-HSQC spectra of 100 μ M NusG-NTD in the absence, black, and in the presence, red, of an equimolar concentration of ω .

Supplementary Figure 4: NusA-NTD does not interact with isolated α or ω . (a) 1D [¹H,¹⁵N]-HSQC spectra of 30 μ M NusA-NTD in the absence, black, and in the presence, red, of an equimolar concentration of α . (b) 2D [¹H,¹⁵N]-HSQC spectra of 100 μ M NusA-NTD in the absence, black, and in the presence, red, of an equimolar concentration of ω .

Supplementary Figure 5: NusA-AR2 does not interact with isolated ω . 2D [¹H,¹⁵N]-HSQC spectra of 30 μ M NusA-AR2 in the absence, black, and in the presence, red, of an equimolar concentration of ω .

Supplementary Figure 6: Interaction studies of NusB and NusB:NusE^{Δ} with RNAP, isolated α and ω . (a) 1D [¹H,¹⁵N]-HSQC spectra of 30 μ M NusB:¹⁵N-NusE^{Δ} in the absence, black, and in the presence, red, of an equimolar concentration of α . (b) 2D [¹H,¹⁵N]-HSQC spectrum of 100 μ M NusB:¹⁵N-NusE^{Δ} in the absence, black, and in the presence, red, of an equimolar concentration of α . (b) 2D [¹H,¹⁵N]-HSQC spectrum of 100 μ M NusB:¹⁵N-NusE^{Δ} in the absence, black, and in the presence, red, of an equimolar concentration of ω . (c) 1D [¹H,¹⁵N]-HSQC spectra of 30 μ M ¹⁵N-NusB in the absence, black, and in the presence, red, of an equimolar concentration of RNAP^{native}. (d,e) Crosslinkling of RNAP and NusB:NusE^{Δ}. 19 % (w/v) SDS-polyacrylamide gel after Ni²⁺ affinity chromatography and staining with Coomassie Blue. Crosslinkling of RNAP and NusG-CTD was used as negative control. S: BioRad low range SDS-PAGE Standard (BioRad, Munich, Germany), FT: flow through, W: fraction of the

last washing step with 5 mM imidazole, E: eluate.

Supplementary Figure 7: The ω subunit does not interact with the β ' subunit. 1D [¹H,¹⁵N]-HSQC spectra of the amide region of 30 μ M ¹⁵N- ω subunit in the absence, black, and in the presence of an equimolar concentration of β ', red.

Supplementary Figure 8: Model of NusG-NTD binding to the β 'CH. The NusG-NTD: β 'CH complex (PDB code: 2K06, NusG-NTD, surface representation; PDB code: 4KMU, β ' clamp helices, ribbon representation) was modeled based on the crystal structure of *Pyrococcus furiosus* Spt4/5 binding to the RNAP clamp domain². Ile (brown), Leu (pink) and Val (beige) residues in the β ' clamp helices are represented as sticks.

Supplementary Methods

Cloning. Plasmids containing the genes *rpoA*, *rpoB*, *rpoC* and *rpoZ* were kindly provided by Irina Artsimovitch. *rpoB* was cloned from pIA942 into pET29b (Novagen, Madison, WI, USA) *via Bam*HI and *NdeI*. *rpoC* was cloned from pIA661 into pET29b *via NdeI* and *Hind*III restriction sites allowing the expression of *rpoC* with a hexahistidine tag at the C-terminus. For tagless production of *rpoZ* the gene was excised from pIA839 with its ribosome binding site *via XbaI* and *Hind*III and cloned into pET32a (Novagen, Madison, WI, USA). For expression of *rpoZ* with an N-terminal SUMO tag the *rpoZ* gene was cloned into pET28 derivative harboring the small ubiquitin-like modifier (SUMO) 1 gene *via Bam*HI and *XhoI* restriction sites.

The gene for NusA-NTD (1-125) was cloned using the ChampionTM pET101 Directional TOPO[©] Expression Kit (Invitrogen, Carlsbad, CA, USA) with the following primers: Fwd-primer: 5'-CAC CAT GAA CAA AGA AAT TTT GGC-3'; Rev-primer: 5'-AGA ACC ACG CGG AAC CAG CAT CGC ACG TTC GGC TTC ACG-3'. The resulting *E. coli* expression vector pET101_NusA-NTD contains a C-terminal hexa-histidine tag and a thrombin cleavage site between NusA-NTD and the histidine tag.

Gene expression and protein purification. *rpoA* was expressed in *E. coli* BL21 (DE3) (Novagen, Madison, WI, USA) harboring the plasmid pIA287. Cells were grown in M9 minimal medium^{3,4} containing 100 µg/ml ampicillin at 37 °C. At an optical density of 600 nm (OD_{600}) of ~ 0.7 expression was induced by 0.1 mM isopropyl-thiogalactoside (IPTG). Cells were harvested after 3 h (9,000 x g, 15 min, 4°C), resuspended in 50 mM Tris/HCl (pH 8.0) containing 500 mM NaCl and disrupted by a microfluidizer (Microfluidics, Newton, MA, USA). Nucleic acids were precipitated by addition of 0.6 % (v/v) polyethylenimine and removed by centrifugation (12,000 x g, 30 min, 4 °C). Subsequently, an ammonium sulfate precipitation (60 % (w/v)) was performed with the supernatant. After centrifugation (12,000 x g, 4 °C, 30 min) the supernatant was dialyzed against 20 mM Tris/HCl (pH 8.0) overnight at 4 °C and applied to a HiTrap QXL column (GE Healthcare,

Munich, Germany). After washing with 20 mM Tris/HCl (pH 8.0) elution was performed using a step gradient with increasing NaCl concentrations (0.25-1 M NaCl in 20 mM Tris/HCl (pH 8.0)). Fractions containing the target protein were combined, dialyzed against the required buffer, concentrated by ultrafiltration (VivaSpin units, molecular weight cut-off (MWCO) = 3.5 kDa, Sartorius Stedim Biotech GmbH, Göttingen, Germany) and stored at -80 °C after freezing with liquid nitrogen. 67 mg protein were obtained from a one liter culture.

rpoB was expressed in E. coli BL21 (DE3) harboring the pET29b/rpoB plasmid. Cells were grown in M9 minimal medium^{3,4} containing 30 µg/ml kanamycin at 37 °C. At an OD_{600} of ~ 0.7 expression was induced by 1 mM IPTG. Cells were harvested 4 h after induction and lysed as described for *rpoA* using a buffer containing 50 mM Tris/HCl (pH 8.0), 500 mM NaCl, 5 % (v/v) glycerol, 1 mM DTT. After centrifugation (30 min, 4 °C, 12,000 x g) the pellet was resolved in 1 mM EDTA (pH 8.0), 1 mg/ml deoxycholic acid sodium salt, 20 mM DTT and lysozyme (0.2 mg/ml) and again centrifuged for 30 min at 12,000 x g and 4 °C. The pellet was then washed three times with the same buffer, subsequently three times with 50 mM Tris/HCl (pH 8.0), 50 mM NaCl, 10 mM EDTA, 5 mM DTT and once with H₂O. Finally, the pellet was resuspended in 50 mM Tris/HCl (pH 7.2), 8 M Urea, 500 mM NaCl and stirred for 1 h at room temperature. Urea was removed by dialysis against 50 mM Tris/HCl (pH 7.2), 5 % (v/v) glycerol, 500 mM NaCl, 0.5 mM EDTA, 1 mM DTT at 4 °C for 3 h followed by overnight dialysis using the same buffer without NaCl. The dialysate was centrifuged (30 min, 4 °C, 12,000 x g) and the supernatant was applied to a HiTrap Heparin HP column (GE Healthcare, Munich, Germany). After washing with 50 mM Tris/HCl (pH 7.2), 5 % (v/v) glycerol, 0.5 mM EDTA, 1 mM DTT elution was performed using a constant NaCl gradient up to 1 M in 50 mM Tris/HCl (pH 7.2), 5 % (v/v) glycerol, 0.5 mM EDTA, 1 mM DTT. Fractions containing pure β were combined and dialyzed against the required buffer before the protein solution was concentrated by ultrafiltration (MWCO = 10 kDa) and stored at -80 °C after freezing with liquid nitrogen. The yield was 53 mg protein per l culture.

rpoC was expressed in *E. coli* Rosetta (DE3) pLysS (Novagen, Madison, WI, USA). The recombinant protein harbored a seven amino acid linker followed by a hexahistidine tag (His₆) at the C-terminus. Cells were grown in M9 minimal medium^{3,4} containing 30 µg/ml kanamycin and 34 µg/ml chloramphenicol at 37 °C. When an *OD*₆₀₀ of ~ 0.5 was reached the temperature was lowered to 16 °C and gene expression was induced with 1 mM IPTG at an *OD*₆₀₀ of 0.6-0.8. Cells were harvested 6 h after induction, resuspended and lysed as described above using buffer A (50 mM Tris/HCl (pH 7.5), 500 mM NaCl, 5 % (v/v) glycerol, 10 mM MgCl₂, 10 µM ZnCl₂, 10 mM imidazole). After centrifugation (30 min, 12,000 x g, 4 °C) the supernatant was applied to a HisTrap HP column (GE Healthcare, Munich, Germany). After washing with buffer A, elution was carried out using a step gradient with increasing imidazole concentrations (10-500 mM in buffer A). Fractions containing β' were combined. Following dialysis against the required buffer the protein solution was concentrated by ultrafiltration (MWCO = 10 kDa) and stored at -80 °C after shock freezing in liquid nitrogen. One liter culture yielded 15 mg protein.

The ω subunit with N-terminal His₆-SUMO tag was produced in *E. coli* Rosetta (DE3) pLysS harboring pET28M-SUMO1/*rpoZ*. Cells were grown in M9 minimal medium^{3,4} in the presence of 30 µg/ml kanamycin and 34 µg/ml chloramphenicol at 37 °C until an *OD*₆₀₀ of 0.4 was reached. The temperature was lowered to 25 °C and at an *OD*₆₀₀ of 0.6-0.8 expression was induced with 1 mM IPTG. Cells were harvested after 4 h, resuspended and lysed as described above. In this case 25 mM Tris/HCl (pH 7.5), 300 mM NaCl, 10 mM imidazole was used for resuspension. After centrifugation (12,000 x g, 30 min, 4 °C), the supernatant was applied to a HisTrap HP column. After washing with 25 mM Tris/HCl (pH 7.5), 300 mM NaCl, 10 mM imidazole, elution was performed using a step gradient with increasing imidazole concentrations (10-500 mM in resuspension buffer). Fractions containing His₆-SUMO- ω were combined and cleaved during dialysis overnight against 25 mM Tris/HCl (pH 7.5), 300 mM NaCl by Senp2, a protease that cleaves directly after SUMO protein. The protein solution was reapplied to the HisTrap HP column.

Pure ω was found in the flow through, dialyzed against the required buffer, concentrated by ultrafiltration (MWCO = 3 kDa) and stored at -80 °C after freezing with liquid nitrogen with a yield of 3 mg protein per liter culture.

Tagless ω was used for *in vitro* assembly of RNAP and produced in *E. coli* Rosetta (DE3) pLysS containing pET32a/*rpoZ*. Cells were grown in M9 minimal medium^{3,4} containing 100 µg/ml ampicillin and 34 µg/ml chloramphenicol at 37 °C. After induction with 0.1 mM IPTG at an *OD*₆₀₀ of 0.6-0.8 cells were grown for another 3 h before harvesting (9,000 x g, 15 min).

NusA-NTD contained amino acids 1-125 and was produced in E. coli BL21 Star (DE3) (Invitrogen, Darmstadt, Germany) harboring pET101 NusA-NTD. Cells were grown at 37 °C in LB medium containing ampicillin (100 μ g/ml) until an OD_{600} of 0.6 was reached. Then the temperature was lowered to 20 °C. After 30 min overexpression was induced by 1 mM IPTG. Cells were harvested after overnight growth, resuspended and lysed as described for rpoA using a buffer containing 20 mM Tris/HCl (pH 7.5), 150 mM NaCl, 10 % (v/v) glycerol, 20 mM imidazole. After centrifugation at 12,000 x g and 4 °C for 30 min, the supernatant was applied to a Ni²⁺-NTA HiTrap column (GE Healthcare, Munich, Germany). After washing with 20 mM Tris/HCl (pH 7.5), 150 mM NaCl, 10 % (v/v) glycerol, 20 mM imidazole elution was performed via a step gradient with increasing imidazole concentrations (20 mM - 1 M imidazole in 20 mM Tris/HCl (pH 7.5), 150 mM NaCl, 10 % (v/v) glycerol, 20 mM imidazole). The fractions containing the NusA-NTD-His₆ fusion protein were combined and the protein was cleaved by thrombin (Novagen, Madison, WI, USA), during dialysis against 20 mM Tris/HCl (pH 7.5) at room temperature overnight. The protein solution was applied to a HiTrap QXL column which was subsequently washed with 20 mM Tris/HCl (pH 7.5) before elution was carried out via a step gradient with increasing NaCl concentrations (0 M-1 M NaCl in 20 mM Tris/HCl (pH 7.5)). The fractions containing NusA-NTD were combined and dialyzed against the required buffer. Finally, the protein solution was

concentrated by ultrafiltration (MWCO = 3 kDa), frozen in liquid nitrogen and stored at -80 °C.

The gene of the SUMO protease SENP2 was expressed in *E. coli* Rosetta (DE3) (Novagen, Madison, WI, USA) harboring the plasmid pET28b-senp2. Cells were grown in LB medium containing 30 µg/ml kanamycin and 34 µg/ml chloramphenicol at 37 °C. At $OD_{600} \sim 0.7$ expression was induced by 1 mM IPTG. Cells were harvested after 4 h (9,000 x g, 15 min, 4°C), resuspended in 40 mM Tris/HCl (pH 7.5) containing 500 mM NaCl, 10 mM imidazole and 5 mM DTT and disrupted by a microfluidizer. The supernatant was applied to a HisTrap HP column. Elution was performed using a step gradient with increasing imidazole concentrations (10-500 mM in resuspension buffer). The fractions containing SENP2 were combined, dialyzed against 5 mM Tris/HCl (pH 7.5), 250 mM NaCl, 10 mM DTT, 0.1 mM EDTA and concentrated by ultrafiltration (MWCO = 10 kDa). Finally the glycerol concentration was adjusted to 20 %, aliquots were frozen in liquid nitrogen and stored at -80 °C.

The production and purification of NusB:NusE^{Δ}, NusB, RNAP α -CTD, NusG-NTD, NusG-CTD and NusA-AR2 were carried out as described previously (Refs. ⁵⁻⁷ for NusB:NusE^{Δ} and NusB, Ref. ⁸ for α CTD, Ref. ⁹ for NusG-NTD, Ref. ⁶ for NusG-CTD, Ref. ⁸ for NusA-AR2).

Formaldehyde crosslink. The crosslinking of RNAP and NusB:NusE[•] was based on the SPINE method¹⁰. 7.7 nmol RNAP were mixed with 15.4 nmol NusB:NusE[•] in 25 mM HEPES (pH 7.5), 100 mM NaCl and a 4 % (w/v) paraformaldehyde solution in the same buffer was added to a final concentration of 0.6 % (w/v). For the crosslink, the mixture was incubated at 37 °C for 20 min. 0.7 ml of Ni²⁺ chelating sepharose (50 % (w/v), GE Healthcare, Munich, Germany), equilibrated with 25 mM HEPES (pH 7.5), 100 mM NaCl, were added and incubated for 20 min at room temperature. Afterwards the mixture was transferred to a 2.5 ml gravity flow column and the flow trough was collected. The column was washed ten times with 1 ml of 25 mM HEPES (pH 7.5),

100 mM NaCl and seven times with 1 ml of the same buffer containing 5 mM imidazole. Bound protein was eluted with 25 mM HEPES (pH 7.5), 100 mM NaCl, 500 mM imidazole. The protein contained in 200 μ l in the flow through, the last washing step and the eluate was precipitated with 50 μ l 50 % (v/v) trichloroacetic acid (TCA) by incubation for 20 min on ice and subsequent centrifugation for 10 min at 15,000 x g. The pellet was dissolved in 50 μ l 2x Roti (Roth, Karlsruhe, Germany). The crosslink was broken by boiling the solution for 20 min and the samples were analyzed by SDS-PAGE. The isolated RNAP, the isolated NusB:NusE⁴ complex as well as NusG-CTD in the absence and presence of RNAP as negative control were treated accordingly.

Programs. All structures were visualized using PyMOL¹¹.

Supplementary References

- Schägger, H. & von Jagow, G. Tricine Sodium Dodecyl-Sulfate Polyacrylamide-Gel Electrophoresis for the Separation of Proteins in the Range from 1-Kda to 100-Kda. *Anal. Biochem.* 166, 368-379 (1987).
- Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. & Cramer, P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. *EMBO J.* 30, 1302-1310 (2011).
- Meyer, O. & Schlegel, H. G. Biology of aerobic carbon monoxide-oxidizing bacteria. *Annu. Rev. Microbiol.* 37, 277-310 (1983).
- Sambrook, J., Fritsch, E. F. & Maniatis, T. in *Molecular Cloning A Laboratory Manual* (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).
- Burmann, B. M., Luo, X., Wahl, M. C., Rösch, P. & Gottesman, M. E. Fine tuning of the *E. coli* NusB:NusE complex affinity to *BoxA* RNA is required for processive antitermination. *Nucleic Acids Res.* 38, 314-326 (2010).
- Burmann, B. M. *et al.* A NusE:NusG complex links transcription and translation. *Science* 328, 501-504 (2010).
- Luo, X. *et al.* Structural and functional analysis of the *E. coli* NusB-S10 transcription antitermination complex. *Mol. Cell* 32, 791-802 (2008).
- 8. Schweimer, K. *et al.* NusA interaction with the α -subunit of *E. coli* RNA polymerase is via the UP-element site and releases autoinhibition. *Structure* **19**, 945-954 (2011).
- Burmann, B. M., Schweimer, K., Scheckenhofer, U. & Rösch, P. Domain interactions of the transcription:translation coupling factor *E.coli* NusG are intermolecular and transient. *Biochem. J.* 435, 783-789 (2011).
- 10. Herzberg, C. *et al.* SPINE: a method for the rapid detection and analysis of protein-protein interactions *in vivo*. *Proteomics* **7**, 4032-4035 (2007).

11. Schrödinger L. The PyMOL molecular graphics system, version 1.3. Schrödinger, LLC, Mannheim, Germany (2010).