Supplementary Figures and Tables

"ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways"

J. Andrew Jones¹, Victoria R. Vernacchio¹, Daniel M. Lachance², Matthew Lebovich¹, Li Fu³, Abhijit N. Shirke³, Victor L. Schultz³, Brady Cress¹, Robert J. Linhardt^{1,2,3}, Mattheos A. G. Koffas^{1,2,*}

¹Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY 12180, USA

²Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY 12180, USA

³Department of Chemistry, Rensselaer Polytechnic Institute, Troy NY 12180, USA

* Corresponding Author

*Corresponding Author Information Mattheos A. G. Koffas Rensselaer Polytechnic Institute 110 8th Street Troy, NY 12180 (518) 276-2220 koffam@rpi.edu Supplementary Discussion: Cloning Timeline for 5-gene pathway

Day 1: Total Time (7 Hours)

3 Hours - PCR amplification of 5 pathway genes

- 1 Hour Digestion of destination vector and PCR products with Thermo FastDigest restriction enzymes NdeI and XhoI
- 1 Hour Gel Electrophoresis and Gel Extraction of appropriate fragments
- 2 Hours Rapid DNA Ligation (Thermo) and Transformation into E. coli DH5a

Day 2: Total Time (9 Hours)

- 8 Hours Pick colonies in to LB media and allow 7 Hours for growth
- 1 Hour Miniprep resulting cultures and send for same day sequencing

Day 3: Total Time (2 Hours)

2 Hours - Analyze sequencing results and start overnight cultures for positive clones

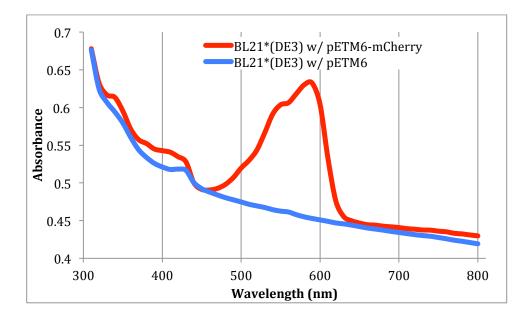
Day 4: Total Time (5 Hours)

- 1 Hour Miniprep overnight cultures of positive clones
- 1 Hour Digest plasmids containing each pathway gene and pooled promoter library plasmids with NdeI and SalI
- 1 Hour Gel electrophoresis and gel extraction of appropriate fragments.
- 2 Hours Rapid DNA Ligation (Thermo) of each gene with randomized backbone and transformation into *E. coli* DH5α

Day 5: Total Time (5 Hours)

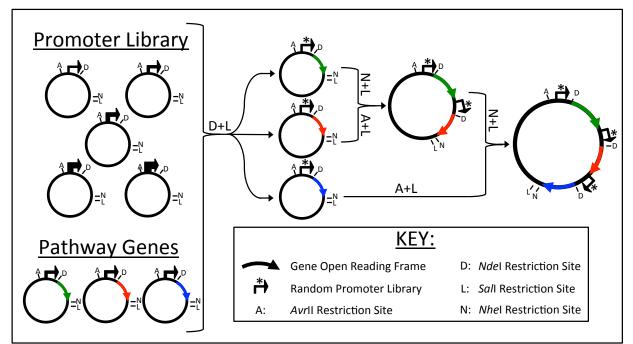
- 1 Hour Scrap plates and miniprep culture
- 1 Hours Digest randomized plasmid containing genes 1 and 3 with NheI and SalI, and randomized plasmid containing genes 2 and 4 with AvrII and SalI
- 1 Hour Gel electrophoresis and gel extraction of appropriate fragments.
- 2 Hours Rapid DNA Ligation (Thermo) of genes 1-2 and 3-4 and transformation into *E. coli* DH5α

Day 6: Total Time (5 Hours)

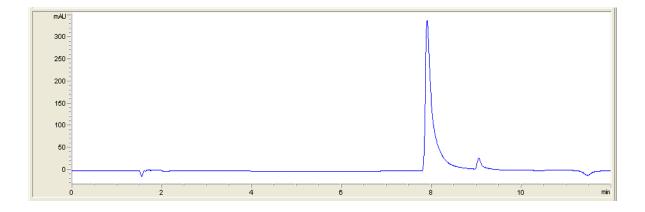

- 1 Hour Scrap plates and miniprep culture
- 1 Hours Digest randomized plasmid containing genes 3-4 with NheI and SalI, and randomized plasmid containing gene 5 with AvrII and SalI
- 1 Hour Gel electrophoresis and gel extraction of appropriate fragments.
- 2 Hours Rapid DNA Ligation (Thermo) of genes 3-4 with gene 5 and transformation into *E. coli* DH5α

Day 7: Total Time (5 Hours)

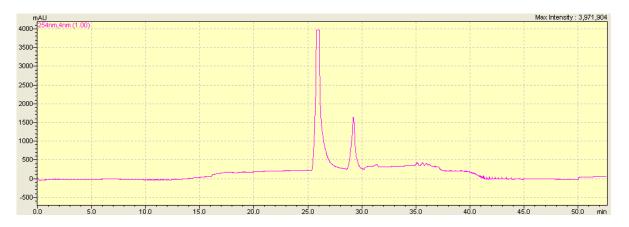
- 1 Hour Scrap plates and miniprep culture
- 1 Hours Digest randomized plasmid containing genes 1-2 with NheI and SalI, and randomized plasmid containing gene 3-4-5 with AvrII and SalI
- 1 Hour Gel electrophoresis and gel extraction of appropriate fragments.
- 2 Hours Rapid DNA Ligation (Thermo) of genes 1-2 with genes 3-4-5 and transformation into *E. coli* DH5α


Day 8: Total Time (1 Hour)

1 Hour – Scrap plates and miniprep culture – This is the 5-gene pathway on a single plasmid with randomized promoters.

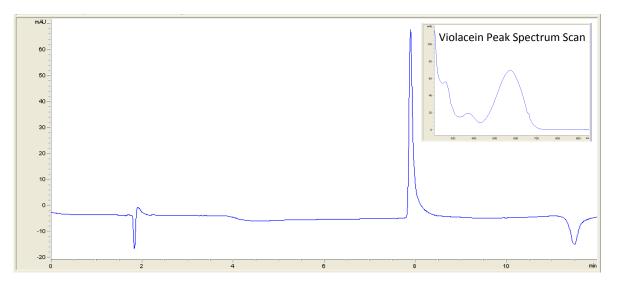

Supplementary Figure 1. Absorbance spectrum of *E. coli* BL21starTM(DE3) expressing the fluorescent reporter mCherry. Note that the control strain (not expressing mCherry) has a smooth

profile while the cells with mCherry present have considerable interference from 450 nm to 630 nm. Optical density measurements for fluorescence studies were taken at 650 nm to minimize interference from mCherry.

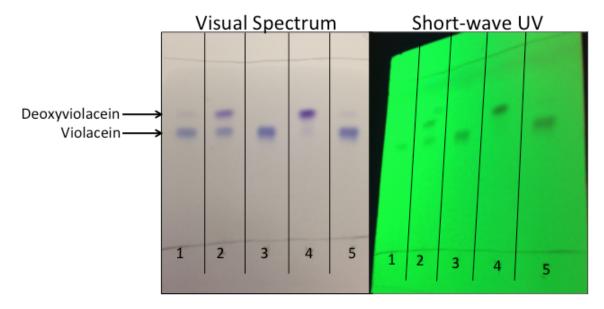


Supplementary Figure 2. Cloning scheme for incorporation of a T7 promoter library into

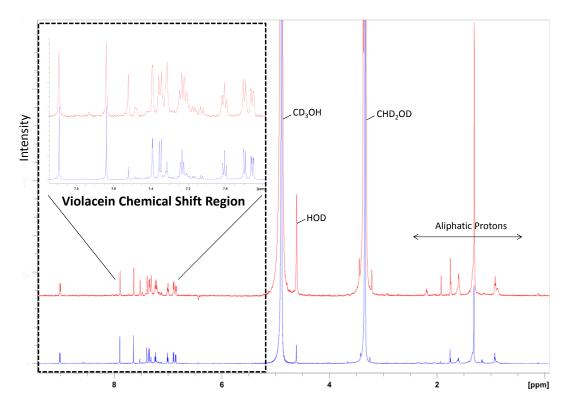
<u>ePathBrick architecture.</u> Utilization of isocaudomer restriction enzyme pairs enables the rapid construction of entire pathways onto a single plasmid. Digestion of pooled, equal molar concentrations of plasmid containing characterized promoters allows for ultimate flexibility in library design.



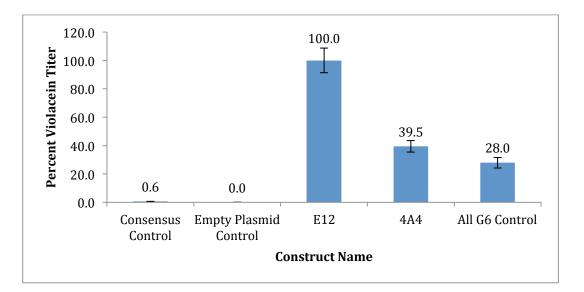
Supplementary Figure 3. Typical HPLC chromatogram used for violacein quantification at 565 <u>nm.</u> Violacein eluted at 7.95 min and deoxyviolacein eluted at 9.11 min.


Supplementary Figure 4. Typical preparative HPLC chromatogram for purification of violacein

standard. Violacein eluted at 26.5 min and deoxyviolacein eluted at 29.5 min.



Supplementary Figure 5. Analytical HPLC chromatogram for violacein fraction from


preparative HPLC run. Only violacein peak is present at 7.9 min. Insert shows UV spectrum scan of violacein peak. This is consistent with literature reports.

Supplementary Figure 6. Thin layer chromatography (TLC) for violacein samples at various levels of purification. (1) Crude violacein just after methanol extraction. (2) After crystallization and hexane extraction. (3) Violacein fractions after preparative HPLC. (4) Deoxyviolacein fractions after preparative HPLC. (5) Sigma standard (Violacein >85%). Sample 3 shows higher percentage violacein than Sigma standard (5).

Supplementary Figure 7. Proton NMR (600 MHz) spectra of violacein prepared from *E. coli* BL21*(DE3) expressing the violacein pathway from plasmid (Blue), and violacein prepared from *Janthinobacterium lividum* (Red, Sigma). Initial structurally informative aromatic proton signals are observed between 6-9 ppm are shown expanded (insert). Signals from NMR solvent (CD₃OH) and trace water 4.0-5.5 ppm are labeled. Aliphatic signals 0.5 - 2.5 ppm observed, probably correspond to residual fatty acids/lipids.

Supplementary Figure 8. Comparison of top producing strains under conditions optimized for mutant E12. Although construct 4A4 produced significantly higher violacein titers under the initial screening conditions (See Figure 5), when compared to construct E12 under conditions optimized for construct E12, its final titer was only 40% that of E12. This supports the case that both genetic and fermentation optimization are necessary for maximum production. The 'All G6 Control' represents each gene of the violacein pathway expressed from our weakest strength promoter. This shows that the trivial (all low) solution is also not sufficient for optimal production. Experiments were conducted in 48-well plate.

gyrA96, relA1InterventionS2E.coli BL21 Star™ (DE3)F ompT gal dcm $rne131$ lon $hsdS_8$ (r_{B} - m_B -) λ (DE3)InvitrogenS3Pseudoalteromonas luteoviolaceaNo modifications: ATCC 29581(Cress et al., 2013)1pETM6ePathBrick expression vector, ColE1 ori, AmpR 2012)(Xu et al., 2012)2pETM6-VioA#1 containing vioA from P. luteoviolacea #1 containing vioB from P. luteoviolacea #1 containing vioD from P. luteoviolaceaThis Study. 2012)3pETM6-VioC#1 containing vioD from P. luteoviolacea #1 containing vioD from P. luteoviolacea #1 containing vioA-vioB in Monocistronic configurationThis Study.6pETM6-VioE#1 containing vioA-vioB in Monocistronic configurationThis Study.7pETM6-VioAB #1 containing vioA-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.14pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.	Number	Strain or vector	Relevant properties	Reference
S3Pseudoalteromonas luteoviolaceaNo modifications: ATCC 29581(Cress et al., 2013)1pETM6ePathBrick expression vector, ColE1 ori, AmpR2013)2pETM6-VioA#1 containing vioA from P. luteoviolaceaThis Study. 2012)3pETM6-VioB#1 containing vioB from P. luteoviolaceaThis Study.4pETM6-VioC#1 containing vioD from P. luteoviolaceaThis Study.5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioA-vioB in Monocistronic configurationThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-C4-mCherry#1 containing mCherry fluorescent reporter sequenceXu et al., 2012)12pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H0' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-GEP#1 containing cEP fluorescent reporterXu et al., 2012)	S1	Escherichia coli DH5a	endA1, hsdR17(rk ⁻ , mk ⁺), phoA, supE44 λ ⁻ , thi ⁻¹ ,	Novagen
S3IuteoviolaceaNo modifications: ATCC 293812013) (Xu et al., 2012)1pETM6ePathBrick expression vector, ColE1 ori, AmpR2012)2pETM6-VioA#1 containing vioA from P. luteoviolaceaThis Study.3pETM6-VioB#1 containing vioB from P. luteoviolaceaThis Study.4pETM6-VioC#1 containing vioD from P. luteoviolaceaThis Study.5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioD from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioA-vioB in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE vioC-vioD in monocistronic configurationThis Study.10pETM6-Mcherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.13pETM6-H9-mCherry#11 Modified with mutant 'H0' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.15pETM6-GEP#1 containing acGP fluorescent reporter sequenceThis Study.	S2	E.coli BL21 Star [™] (DE3)	$F^{-}ompT$ gal dcm rne131 lon hsdS _B (r_{B} - m_{B} -) λ (DE3)	Invitrogen
1pETM6ePainBrick expression vector, ColeT off, Ampk2012)2pETM6-VioA#1 containing vioA from P. luteoviolaceaThis Study.3pETM6-VioB#1 containing vioB from P. luteoviolaceaThis Study.4pETM6-VioC#1 containing vioC from P. luteoviolaceaThis Study.5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioE from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioABE#1 containing vioA-vioB in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-C4-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-G6-mCherry#11 Modified with mutant 'G4' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-GEP#1 containing aCEP fluorescent reporter(Xu et al., (Xu et al.,	S3		No modifications: ATCC 29581	
3pETM6-VioB#1 containing vioB from P. luteoviolaceaThis Study.4pETM6-VioC#1 containing vioC from P. luteoviolaceaThis Study.5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioE from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioC-vioD in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioC-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-MCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.14pETM6-H10-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16nETM6-GEP#1 containing aCEP fluorescent reporter (Xu et al., (Xu et al.,	1	pETM6	ePathBrick expression vector, ColE1 ori, AmpR	
4pETM6-VioC#1 containing vioC from P. luteoviolaceaThis Study.5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioE from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioA-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.11pETM6-WioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-C4-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.13pETM6-H10-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.14pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 containing aCEP fluorescent reporter sequenceThis Study.16pETM6-GEP#1 containing acCEP fluorescent reporter(Xu et al.,	2	pETM6-VioA	#1 containing vioA from P. luteoviolacea	This Study.
5pETM6-VioD#1 containing vioD from P. luteoviolaceaThis Study.6pETM6-VioE#1 containing vioE from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioA-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-GEP#1 containing aGEP fluorescent reporter(Xu et al., (Xu et al.,	3	pETM6-VioB	#1 containing vioB from P. luteoviolacea	This Study.
6pETM6-VioE#1 containing vioE from P. luteoviolaceaThis Study.7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioA-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.11pETM6-WioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H10-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16neTM6-aGEP#1 containing aGEP fluorescent reporter(Xu et al.,	4	pETM6-VioC	#1 containing vioC from P. luteoviolacea	This Study.
7pETM6-VioAB#1 containing vioA-vioB in Monocistronic configurationThis Study.8pETM6-VioCD#1 containing vioC-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H19-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16nETM6-GEP#1 containing aGEP fluorescent reporter(Xu et al.,	5	pETM6-VioD	#1 containing vioD from P. luteoviolacea	This Study.
7pETM6-VIOABconfigurationThis Study.8pETM6-VioCD#1 containing vioC-vioD in Monocistronic configurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-MCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-aGEP#1 containing aGEP fluorescent reporter(Xu et al.,	6	pETM6-VioE	#1 containing vioE from P. luteoviolacea	This Study.
8pETM6-VICDconfigurationThis Study.9pETM6-VioABE#1 containing vioA-vioB-vioE in Monocistronic configurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter sequence(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-gEP#1 containing acGEP fluorescent reporter (Xu et al.,(Xu et al., (Xu et al.,	7	pETM6-VioAB		This Study.
9pETM6-VIOABEconfigurationThis Study.10pETM6-VioABECD#1 containing vioA-vioB-vioE-vioC-vioD in monocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-eGEP#1 containing eGEP fluorescent reporter(Xu et al.,	8	pETM6-VioCD		This Study.
10pETM6-VIOABECDmonocistronic configurationThis Study.11pETM6-mCherry#1 containing mCherry fluorescent reporter(Xu et al., 2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-eGEP#1 containing eGEP fluorescent reporter(Xu et al., 2012)	9	pETM6-VioABE		This Study.
11pETM6-mCherry#1 containing mCherry fluorescent reporter2012)12pETM6-C4-mCherry#11 Modified with mutant 'C4' T7 promoter sequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-eGEP#1 containing eGEP fluorescent reporter(Xu et al.,	10	pETM6-VioABECD		This Study.
12pETM6-C4-mCherrysequenceThis Study.13pETM6-G6-mCherry#11 Modified with mutant 'G6' T7 promoter sequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-eGEP#1 containing eGEP fluorescent reporter(Xu et al.,	11	pETM6-mCherry		
13pETM6-G6-mCherrysequenceThis Study.14pETM6-H9-mCherry#11 Modified with mutant 'H9' T7 promoter sequenceThis Study.15pETM6-H10-mCherry#11 Modified with mutant 'H10' T7 promoter sequenceThis Study.16pETM6-eGEP#1 containing eGEP fluorescent reporter(Xu et al.,	12	pETM6-C4-mCherry	-	This Study.
14 pETM6-H9-mCherry sequence 111 Modified with mutant 'H10' T7 promoter This Study. 15 pETM6-H10-mCherry #11 Modified with mutant 'H10' T7 promoter This Study. 16 pETM6-eGEP #1 containing eGEP fluorescent reporter (Xu et al.,	13	pETM6-G6-mCherry	-	This Study.
15 pETM6-eGEP #1 containing eGEP fluorescent reporter (Xu et al.,	14	pETM6-H9-mCherry	sequence	This Study.
$\pi = \pi =$	15	pETM6-H10-mCherry	-	This Study.
	16	pETM6-eGFP	#1 containing eGFP fluorescent reporter	· · · ·

Supplementary Table 1. List of strains and plasmids used in this study.

Number	Primer ID	Primer Sequence (5'>3')
1	vioA_Ndel_F	GCGCCATATGTTAAATTTAGAGCATTCAG
2	vioA_XhoI_R	CGTACTCGAGTCAAAGGTATACTACTTCTTTCAC
3	vioB_Ndel_F	GCACATATGAGTGTTTTAGATTTTCCTCG
4	vioB_Xhol_R	CTCTCGAGCTAACCTTCCTTTGAAAG
5	vioC_Ndel_F	GCGCATATGAGTAAAATAATTATTGTTGGTGGTG
6	vioC_Xhol_R	CGCTCGAGTTAATTCATTCTCCCTATTTTGTAC
7	vioD_Ndel_F	GCACATATGAACATTTTAGTGATCGGG
8	vioD_Xhol_R	GATCTCGAGTTAACGTTGCAGCGC
9	vioE_Ndel_F	GCGCATATGGAATTACGTAAAGTAGATAGAGTTCC
10	vioE_XhoI_R	CGCTCGAGTCAATTCCTATGAGAGAGAC
11	vioB_mid1_seq_F	GCAAGGATTTCTTATTGAATCAATTGGGCTTGC
12	vioB_mid2_seq_F	CCAAACCTAATCGAGTTGCAAAAAAGCAAGC
13	vioB_mid3_seq_F	GCATTAAAAGACTCTGTCGACCTAGAGTTGTCG
14	T7_FWD	TAATACGACTCACTATAGGG
15	T7Term_REV	GCTAGTTATTGCTCAGCGG
16	SDM_PT7_Random_FWD	CCCGCGAAATTAATACGACTCACTANNNNNGAATTGTGAGCGGATAACAATTCCC
17	SDM_PT7_Random_REV	GGGAATTGTTATCCGCTCACAATTCNNNNNTAGTGAGTCGTATTAATTTCGCGGG
18	Seq_Pro_FWD_VioA	CGCTCTCCCTTATGCGACTCC
19	Seq_Pro_FWD_VioB	GGGGCATCTTAGCCGGCAAG
20	Seq_Pro_FWD_VioC	GCAGCGGCAAAAGCGTTAAACC
21	Seq_Pro_FWD_VioD	CCGAACGTTCACGCCTCTGTAAG
22	Seq_Pro_FWD_VioE	CGTCTATGGCGTATAGCGAGCTTC

Supplementary Table 2. List of primers used in this study.