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The following sections comprise the supplementary material to the main text. We provide the following: (i) An
analysis of the RLC network used in the experiments; (ii) A derivation of the e�ective admittance of the nanoparticle
devices, starting with the rate equations and (iii) The procedure used for the data �ts and control experiments data
in which no Au nanoparticles were present.

I RLC NETWORK

A diagram of the circuit used in this work is shown in Fig. S1. The circuit consists of a capacitance Cp which takes
into account the parasitics of the components and wiring, an inductor L which consists of the chip inductor placed
on the sample holder, and a resistor Rm which takes into account the resistances in the wiring and the inductor - but
could also double to allow for a matching resistor. The nanoparticle device, when modeled as a lumped component
resistor ∆R and capacitor ∆C in parallel, as described in Section II below, allows the treatment of the entire system
as a simple tank circuit. The impedance of the resonant circuit can then be described as:

Ztot = Rm + iωL+∆R ∥ (∆C + Cp) (1)

Expanding out the terms and arranging into real and imaginary components, we arrive at the impedance of the circuit
as a function of the `components' of the device, ∆R and ∆C.

Ztot =

[
Rm +

∆R

1 + (ωCΣ∆R)2

]
+ iω

[
L− CΣ∆R2

1 + (ωCΣ∆R)2

]
(2)

where CΣ = Cp + ∆C. From here, it is possible to understand how a shift in the resistance or capacitance of the
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Figure S 1: Schematic model of the RLC circuit used in the radio-frequency re�ectometry measurements. The nanoparticle
device is modeled as a lumped component resistor ∆R and capacitor ∆C in parallel which allows the treatment of the entire
system as a simple tank circuit.
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device will change the response seen on the circuit. We can simplify this equation by looking at how it behaves near
resonance, since this is the nominal operation range - as carried out in the resonant circuit model of Ref. [1]. Making
the (generally good) approximation that ω∆RCΣ >> 1 and substituting ω2

0 = 1/(LCΣ):

Ztot,res = Rm +
L

∆RCΣ
+ iωL− i

ωCΣ
(3)

where the imaginary component vanishes to zero exactly on resonance. Note that in our work ∆R is typically very
large, which di�ers from the work by, e.g., Schoelkopf et al [2] where the resonant circuit is used to down-convert the
resistance of a single-electron transistor (typically of order 10 kΩ) to 50 Ω. From here on, unless explicitly stated,
the frequency is assumed to be on resonance. If we de�ne Zr and Zi as the real and imaginary components of the
impedance of the circuit, and Z0 as the 50Ω impedance of the wave guide connected to the tank circuit, then the
re�ection coe�cient is given by:

Γ =
Z − Z0

Z + Z0
=

Z2
r + Z2

i − Z2
0 + 2iZ0Zi

(Zr + Z0)2 + Z2
i

(4)

This, along with the calculated impedance from above, can be put together to show how the measured response of
the tank circuit will vary as a function of e�ective dissipative ∆R and reactive ∆C components of the device, which
can be in turn matched to the physics of the device itself using appropriate models.

The amplitude and phase of the re�ected signal are given by:

|Γ| =
√
(Z2

r + Z2
i − Z2

0 )
2 + (2Z0Zi)2

(Zr + Z0)2 + Z2
i

(5)

Γϕ = atan
2Z0Zi

|Z|2 − Z2
0

(6)

The phase response is a clear indicator of under [Z(ωres) > 50Ω] or over [Z(ωres) < 50Ω] coupling. In the latter
case, the phase change through resonance will be 0 ≤ ϕ ≤ π and the former will result in a phase shift of ϕ = 2π. It
is now possible to see how the magnitude and phase of the re�ection coe�cient vary with relevant factors. For the
capacitance shift in phase of the re�ection coe�cient:

∂Γϕ

∂∆C

∣∣∣∣
ω=ω0

=
2Z0

ωC2
Σ(R

2
eff − Z2

0 )
=

2QZ0

CΣ(Reff − Z0)
, (7)

where Reff = Rm +L/(∆RCΣ) and Q =
√

L
CΣ

/(Reff +Z0) is the loaded quality factor of the resonator. In the limit

where Rm → 0 and ∆R → ∞ this reduces to Eq. 3 in the main text. For the change in re�ection magnitude due to
a device resistance shift (still assuming ω∆RCΣ >> 1) :

∂|Γ|
∂∆R

∣∣∣∣
ω=ω0

=
2LZ0

CΣ∆R2(Reff + Z0)2
=

2Z0Q
2

∆R2 . (8)

And �nally, the change in magnitude due to a capacitance shift:

∂|Γ|
∂∆C

∣∣∣∣
ω=ω0

=
−2Z0Q

2

CΣ∆R
. (9)

From this, it can be seen that for a �xed device capacitance, the magnitude shift becomes far more sensitive to resistive
changes for a device with smaller resistance. It should also be said that the change of re�ection coe�cient angle is
negligible for changes of device resistance in the case where ∆R is large.
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II EFFECTIVE ADMITTANCE: RATE EQUATIONS

To calculate the e�ective admittance of the nanoparticle device we start by assuming that we are in the incoherent
regime such that the tunnel coupling γ is su�ciently small: hγ ≪ kbT . The tunnel rates for a single electron to tunnel
o� and on a level at energy ϵ relative to the Fermi energy of the tunnel electrode are given by [3, 4]:

γoff = γ(1− f(ϵ)) (10)

γon = ηγf(ϵ) (11)

where η = 2 indicates spin degeneracy and f(ϵ) is a Fermi function. To simplify the analysis we will use η = 1 here
which does not a�ect the results - apart from a temperature-dependent shift of the resonance center [5] which is not
important for the analysis below. In the presence of an rf drive, the position of the level relative to the Fermi energy
of the tunnel electrode is given by:

ϵ(t) = −eα(Vg + VRF e
iωt) (12)

where we make use of the lever arm α = CR/(CL+CR) where CR and CL are the geometric capacitances between the
nanoparticle and the gate electrode and the nanoparticle and the rf electrode, respectively. Typically for our devices
CR ≪ CL and as a result α ≪ 1. The probabilities for the level to be either empty (P0) or occupied (P1) by a single
charge are:

dP0

dt
= γoffP1 − γonP0 (13)

dP1

dt
= γonP0 − γoffP1 (14)

Since P0 + P1 = 1 we arrive at the master rate equation:

dP1

dt
+ γP1 = γf(ϵ) ≈ γ

(
1 +

(
1− eαVRF

kBT
eiωt

)
e

−eαVg
kBT

)−1

(15)

where we use a small excitation approximation, i.e. eαVRF ≪ kBT . Notice that the gate voltage term cannot
be assumed small in comparison with thermal energies. Using G = e−(eαVg)/(kBT ) for brevity, the solution to this
di�erential equation is a hypergeometric function [6]:

P1 =

(
1

1 +G

)
2F1

(
1,− iγ

ω
; 1− iγ

ω
;

G

1 +G

eαVRF e
iωt

kBT

)
(16)

This can be expressed as a sum:

P1 =
1

1 +G

[
1 +

∞∑
n=1

−iγ

ωn!(n− iγ
ω )

(
G

1 +G

eαVRF e
iωt

kBT

)n
]

(17)

This is the full response of a single electron revoir with a single lead and single gate to a small oscillation applied to
the source. The terms in this sum die o� rapidly with increasing n, so by taking the �rst term (n = 1), we can extract
much of the physics of the system without too much complexity.

P1 ≈ 1

1 +G

[
1−

iγ
ω

1− iγ
ω

G

1 +G

eαVRF e
iωt

kBT

]
(18)
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The expected charge drawn from a voltage source connected to the RF electrode at time t is given byQRF (t) = eαP1(t).
The expected current �owing from the voltage source is then:

iRF (t) =
dQRF (t)

dt
=

G

(1 +G)2
ωγ

ω − iγ

e2α2

kBT
VRF e

iωt (19)

The e�ective impedance is thus:

Zeff = VRF e
iωt/iRF =

(1 +G)2

G

kBT

e2α2

ω2 + γ2

ωγ(ω + iγ)
(20)

Equating this with Z−1
eff = R−1

eff + jωCeff we �nd that:

Reff =
kBT

e2α2γ

(
γ2

ω2
+ 1

)
(1 +G)2

G
(21)

Ceff =
e2α2

kBT

(
ω2

γ2
+ 1

)−1
G

(1 +G)2
(22)

Identifying (1 +G)2/G as 4 cosh2
(

−eα∆Vg

2kBT

)
we arrive at Eq. 1 and 2 in the main text.

III DATA ANALYSIS AND CONTROL DEVICES

Using Eq. 7 and Eq. 22 (or Eq. 2 and Eq. 3 in the main text) we are able to �t the measured data to theory, provided
CΣ and Q are known. We obtain both from the measured amplitude and phase response over a large frequency range
which shows a resonance at f = 345 MHz. Knowing the value of the chip inductor L = 500 nH this yields CΣ = 0.43
pF. The quality factor is measured by �tting the phase response to: ϕ(f) = ϕ0 + 2 atan[2Q(1 − f/f0)] where ϕ0

is the angle at the resonance frequency f0. This yielded a best �t to the data of Q = 59 ± 4. This is somewhat
larger than expected for a Z0 = 50 Ω loaded circuit which we tentatively attribute to an impedance mismatch at the
cryogenic ampli�er connected to the circuit. For the data �ts in the main text we used γ ≫ ω and the experimentally
determined CΣ = 0.43 pF and Q = 59. A constant background slope, seen in all data including control samples, see
e.g. Fig. S2b below, has been subtracted.

The full-width-half-maximum (FWHM) of the resonances as a function of gate voltage (Vg) described by
Eq. 22 provides a relation between temperature and lever arm:

∆Vg,FWHM =
kBT

eα
(ln(3 +

√
8)− ln(3−

√
8)) ≈ 3.53

kBT

eα
(23)

The gate dependency is the di�erential of the fermi function, as expected. Using Eq. 7 and 22, the maximum phase
signal is given by:

|∆Φmax| =
2Q

CΣ

e2α2

4kBT
(24)

From these relations we can determine the temperature and lever arm as:

T =
2CΣ|∆Φmax|∆V 2

g,FWHM

(3.53)2kBQ
α =

2CΣ|∆Φmax|∆Vg,FWHM

3.53eQ
(25)
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Figure S 2: (a) Scanning electron micrograph of a device with Au nanoparticles as indicated by the red circles. (b) Phase
data from a control device without nanoparticles for large 5x5 µm gate area. The vertical scale bar (phase) is set to allow for
a direct comparison with Fig. 3b in the main text. (c) Schematic of the nanoparticle (top) and control (bottom) devices.

We are thus able to determine the temperature from measurements of the peak width and height directly which
does not require a separate measurement of the lever arm. The signal strength is maximized by improving the
lever arm and quality factor. As described in the main text, the devices can be used as a primary thermometer,
the limits of which are set by the tunnel coupling γ and the 0D level spacing and charging energies of the nanoparticles.

To ensure that we measured the nanoparticles and not some other e�ect, e.g. charge traps in the oxides, control
samples were prepared. When nanoparticles are deposited, a rough indication of the average density is obtained
from scanning electron micrographs, see Fig. S2a. For the control devices, exactly the same fabrication procedure
as outlined in the Methods section in the main text was carried out, with the exception that no nanoparticles were
deposited onto the substrates. All other variables were kept the same, and the various control devices measured. An
example is shown in Fig. S2b, for which indeed no signal is observed apart from a slowly decreasing background
seen in all devices - leading to the conclusion that the nanoparticles are indeed responsible for resonances in the
data. Samples with Au nanoparticles but with considerable thicker gate oxides (> 10 nm Al2O3) also did not show a
response at 400 mK (not shown) as expected since for these devices the lever arm will be much smaller and thus the
measured signal strength, as expressed by Eq. 24.
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