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1. Device Modeling 

 

 

Figure S1. Energy barrier of ion hopping process. 

  

The growth rate of the state variable, w, is determined by ion hopping process over an energy 

barrier as shown in figure S1. It can be written as [S1- S3]: 

dw

dt
= 𝑓(𝑤, 𝑉) ∙ d ∙ f [exp (

−q(U−𝛼1𝑉)

kT
) −  exp (

−q(U+𝛼2𝑉)

kT
)]                                 (S1) 

where d is half of the average hopping distance of ions, f is the attempt frequency, q is the charge 

of an electron, U is the activation potential energy, k is the Boltzmann’s constant, T is the 

temperature in Kelvin, α1 and α2 are barrier lowering coefficients [S1], and f(w,V) is a window 
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function to account for the non-linear response to the applied voltage [S2]. The window function 

used in this paper is shown in equation S2: 

f(w, V) = (w − 1)2u(−V) + w2u(V)                                            (S2) 

Where u() is the Heaviside step function. By plugging equation (S3) into equation (S1), the rate 

equation of w can be re-written as: 

dw

dt
= (w − 1)2k(e−μ1V − eμ2V)u(−V) + w2k(e−μ1V − eμ2V)u(V)                 (S3) 

where 𝑘 = 𝑑𝑓 𝑒𝑥𝑝 (
−𝑞𝑈

𝑘𝑇
), 𝜇1 = exp (

−𝑞𝛼1

𝑘𝑇
), and 𝜇2 = 𝑒𝑥𝑝 (

−𝑞𝛼2

𝑘𝑇
). Eq. (S3) is Eq. (1) in the main 

text. 

 

The current through the device described by equation (2) consists of tunneling-dominated 

conduction and Schottky-dominated conduction. The tunneling current can be calculated by 

assuming MIM structure with very thin insulator so that the tunneling current is observed. Using 

the expressions for a square barrier [S4, S5, S6], the current can be derived as: 

I = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3 exp (−𝑏1)
1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
(1 − exp(𝑐1𝑞𝑉))                    (S4) 

Where 

𝑏1 =  
2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2 − (𝜑0 − 𝑉)
3

2)    if V < 𝜑𝑂                               (S5) 

                                                    =
 2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2)                          if V > 𝜑𝑂 

𝑐1 =  
𝛼𝑑

𝑉√𝑞
(𝜑0

1

2 − (𝜑0 − 𝑉)
1

2)       if V < 𝜑𝑂                                (S6) 
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                                                    =
𝛼𝑑

𝑉√𝑞
(𝜑0

1

2)                             if V > 𝜑𝑂 

A is the filament area, m is the effective electron mass, h is Plank’s constant, φ0 is the barrier 

height at zero bias, d is the tunneling distance, and α =
4𝜋√2𝑚

ℎ
. 

At low bias, equation (S5) and (S6) can be simplified as: 

                                               𝑏1 =  
2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2 − (𝜑0 − 𝑉)
3

2)                                                     

                                                   =
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3

2 (1 − (1 −
𝑉

𝜑0
)

3

2
) 

=
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3
2(1 − (1 −

3𝑉

2𝜑0
)) 

                                                     =
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3

2 (
3𝑉

2𝜑0
)                                                                  (S7) 

 

𝑐1 =
𝛼𝑑

2√𝑞𝜑0
                                                                                  (S8) 

 

By plugging equation (S7) and equation (S8) into the equation (S4), 

                        I = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3 exp(−𝑏1)
1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
(1 − exp(𝑐1𝑞𝑉)) 

                          = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3

1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
𝑒−𝛼𝑑√𝑞𝜑0𝑒

𝛼𝑑𝑉

4
√

𝑞

𝜑0 (1 − 𝑒
−𝛼𝑑𝑉

2
√

𝑞

𝜑0) 
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                           = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3

1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
𝑒−𝛼𝑑√𝑞𝜑0sinh (

𝛼𝑑𝑉

4
√

𝑞

𝜑0
) 

                             = A
16𝑘𝑇𝜋2𝑚𝑞√𝑞𝜑0

𝛼𝑑ℎ3 sin(
𝜋𝛼𝑑𝑘𝑇

2√𝑞𝜑0
)

𝑒−𝛼𝑑√𝑞𝜑0sinh (
𝛼𝑑𝑉

4
√

𝑞

𝜑0
)                                                (S9) 

For the Schottky junction current is explained by equation (S10). 

𝐼 =
𝑞𝐴𝐷𝑛

𝐿
(1 − 𝑒𝑥𝑝 (−

𝑞𝑉

𝜗𝑘𝑇
))                                                         (S10) 

where q in the charge of an electron, A is the dimension of the device, D is the diffusion 

coefficient, n is the number of electrons, L is the diffusion length of electrons, V is the applied 

voltage, 𝜗 is an ideality factor, k is the Boltzmann’s constant and T is the temperature in Kelvin. 

The total current includes the parallel contribution from the filament region (with relative 

area w) and Schottky region (with relative area 1-w). Combining Eqs. (S9) and (S10), one 

obtains: 

𝐼 = 𝑤 𝛾 sinh(𝛿 × 𝑉) + (1 − 𝑤)𝛼(1 − 𝑒−𝛽×𝑉))                                               (S11) 

Where γ, δ, α, β corresponds to the parameters defined in (S9) and (S10). 
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2. Details of the measured data and modelling 

 

Figure S2. Experimental measurements on the memristor devices in a network showing the 

analog conductance change and device-device variations. The conductance was measured with 

0.2 V, 1 ms pulses, and the devices were subject to 100 pulses of potentiation (-1 V, 10 μs) and 

100 pulses of depression (1.15 V, 10 μs). (a, b) experimental results for the 9 memristors 

corresponding to the primary principal component (a) and the 9 memristors corresponding to the 

second principal component (b). (c, d) modeled conductance for the cases in (a, b) using 

equations (1) and (2). 

 

Figure S2 shows the analog conductance changes of the 18 memristor devices forming the 

network. Device-device variations are clearly observed which causes conductance discrepancy 
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after potentiation/depression pulses. To verify the effect of device variations on the network 

performance, the relevant device parameters were assumed to vary following Gaussian 

distributions (Table S1) and the exact value of a parameter for a given device was chosen 

randomly using a Monte Carlo method during the simulations. Figure 7b shows the average 

value and standard deviation calculated using this approach, which are consistent with the 

experimentally observed variations. The model with the random device variations was then 

applied to the network analysis and led to Figure 7d.  The parameters used in the simulation are 

shown in Table S1. 

 

 

Table S1. Device parameters used in the simulation. 
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 3. Weight normalization with Sanger’s Rule 

The Sanger’s rule originates from Hebb’s rule [S7]. For the simplicity, with the assumption that 

we have only one output, we can write the Hebb’s rule as shown in the equation below. 

𝑤𝑖(𝑛 + 1) = 𝑤𝑖 + 𝜂𝑦𝑥𝑖                                           (S12) 

If we require the weights to be normalized to prevent infinite growing output of Hebb’s rule, the 

update rule is modified as: 

𝑤𝑖(𝑛 + 1) =
𝑤𝑖+𝜂𝑦𝑥𝑖

√∑ (𝑤𝑗+𝜂𝑦𝑥𝑗)2𝑚
𝑗=1

2
                                      (S13) 

where m is the number of inputs. Because 𝜂 , the update rate, is normally very small(<<1), 

through Taylor expansion and keeping only the leading term, (S13) becomes.  

𝑤𝑖(𝑛 + 1) = 𝑤𝑖 + 𝜂𝑦(𝑥𝑖−𝑤𝑖𝑦)                 (S14) 

Eq. (S14) is the equation for Sanger’s rule (with only 1 output. The case for more than one 

outputs can be derived similarly). In other words, by implementing Sanger’s rule (S14), we are 

effectively implementing rule (S13) (again for small update rates 𝜂  which is satisfied in 

experiments) with normalized weights.  
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