Supplementary Figures for

CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

William G O'Brien¹, III, Vladimir Berka², Ah-Lim Tsai², Zhaoyang Zhao¹ and Cheng Chi Lee^{1*}

¹Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA 77030.

²Division of Hematology, Department of Internal Medicine, University of Texas

Health Science Center, Houston, Texas, USA 77030.

Figure S1, Comparing oxygen consumption of WT mice to $Ampd3^{-/-}(A)$ and $Cd73^{-/-}(B)$ with and without running wheel over periods of 48 h.

Figure S2. Fasting blood glucose levels. Mice from the four genotypes (n=4) were fasted overnight and blood obtained by tail clipping. Blood glucose was measured using a TrueTrack meter (Nipro Diagnostics, FL, USA), following manufacturer's instructions.

Figure S3. Methemoglobin (MetHb) levels in four genotypes, (n=4). The erythrocyte metHb levels are comparable among the four genotypes.

Figure S4. Adenine nucleotides' effects on p50 of mouse hemoglobin. Adenine nucleotide titrations of mouse hemoglobin p50: A and B. 5'-AMP (m=0.16 \pm 0.05, r²=0.73); C and D. ADP, (m=0.58 \pm 0.05, r²=0.97) and E and F. ATP (m=1.33 \pm 0.06, r²=0.99).

Figure S5. Change in Hemox buffer pH and p50 values of mouse erythrocytes of the four genotypes [n=2, DKO (double knockout): $AMPD3^{-//}Cd73^{-/}$].

Figure S6, ATP's efficacy on Hemoglobin p50 is unchanged by addition of 2,3-BPG. ATP titration against human hemoglobin p50 in the presence and absence of 1mM 2,3-BPG.