Supplementary information

Manuscript title:

Intestinal organoids for assessing nutrient transport, sensing and incretin secretion

Authors list:

Tamara Zietek, Eva Rath, Dirk Haller, Hannelore Daniel

Supplementary Table S1

Supplementary Table S1: Statistical analyses of transport and hormone secretion studies. Overview of statistical analyses and calculated p-values for the data depicted in **Fig. 1c-e**, **Fig. 2b-d** and **Fig. 2f,g**.

Figure	Comparison	Test	P-Value
1c left	WT Glucose vs.		< 0.001
	WT Glucose + Phloridzin		
	WT Glucose vs.	Two Way ANOVA	< 0.001
	SGLT1 ^{-/-} Glucose	followed by Tukey test	
	SGLT1 ^{-/-} Glucose vs.		0.040
	SGLT1 ^{-/-} Glucose + Phloretin		
1c mid	WT α-MDG vs.		< 0.001
	WT α-MDG + Phloridzin	Two Way ANOVA	
	WT α-MDG vs.	followed by Tukey test	< 0.001
	SGLT1 ^{-/-} α-MDG		
1c right	WT Fructose vs.		< 0.001
	GLUT5 ^{-/-} Fructose	Two Way ANOVA	
	GLUT5 ^{-/-} Fructose vs.	followed by Tukey test	0.018
	GLUT5 ^{-/-} Fructose + Phloretin		
1d	WT Gly-Sar vs.	Student's t test (version d)	0.008
	PEPT1 ^{-/-} Gly-Sar	Student's t test (unpaired)	
1e	WT Gly-Sar vs.		0.009
	WT Gly-Sar + Gly-Gly	One Way ANOVA followed by	
	WT Gly-Sar vs.	Holm-Sidak method	< 0.001
	WT Gly-Sar + Cefadroxil		
2b	Duodenum vs. Jejunum	One Way ANOVA followed by Holm-Sidak method	0.034
	Duodenum vs. Ileum		< 0.001
	Jejunum vs. Ileum		< 0.001
2c	Basal vs. Glucose	One Way ANOVA followed by Holm-Sidak method	< 0.001
	Basal vs. Gly-Sar		0.013
	Basal vs. DCA		< 0.001
2d left	WT Basal vs. Gly-Sar	One Way ANOVA followed by	0.006
	WT Basal vs. F/I	Holm-Sidak method	< 0.001
	PEPT1 ^{-/-} Basal vs. Gly-Sar	One Way ANOVA followed by	0.876
	PEPT1 ^{-/-} Basal vs. F/I	Holm-Sidak method	< 0.001
	WT F/I vs. PEPT1 ^{-/-} F/I	Two Way ANOVA	0.961
		followed by Tukey test	
2d right	WT Basal vs. Glucose	One Way ANOVA followed by	0.003
	WT Basal vs. F/I	Holm-Sidak method	< 0.001
	SGLT1 ^{-/-} Basal vs. Glucose	One Way ANOVA followed by	0.964
	SGLT1 ^{-/-} Basal vs. F/I	Holm-Sidak method	< 0.001
	WT F/I vs. SGLT1 ^{-/-} F/I	Two Way ANOVA	0.743
		followed by Tukey test	
2f	Duodenum vs. Jejunum	One Way ANOVA followed by Holm-Sidak method	< 0.001
	Duodenum vs. Ileum		< 0.001
	Jejunum vs. Ileum		< 0.001
2g	WT Basal vs. Glucose	One Way ANOVA followed by	0.043
	WT Basal vs. F/I	Holm-Sidak method	< 0.001
	SGLT1 ^{-/-} Basal vs. Glucose	One Way ANOVA followed by	0.746
	SGLT1 Basal vs. Glacose	Holm-Sidak method	< 0.001
	~ C211	Two Way ANOVA	.0.001
	WT F/I vs. SGLT1 ^{-/-} F/I	followed by Tukey test	0.438

Supplementary Figure S1

Supplementary Figure S1: Cell polarization, specificity of PEPT1 and SGLT1 antibodies, *Glut5* expression, and permeability of the organoid epithelium.

(a) Immunofluorescent staining of villin (red) and E-Cadherin (green) shows polarized intestinal epithelial cells; nuclei (blue). (b) Organoids derived from PEPT1^{-/-} (upper panel) and SGLT1^{-/-} (lower panel) mice demonstrate no staining to the corresponding PEPT1 or SGLT1 antibodies, respectively. As a control, PEPT1^{-/-} organoids show specific SGLT1 staining and vice versa. (c) *Glut5* mRNA expression in SI organoids derived from WT mice. mRNA levels of the housekeeping gene *Hprt* serve as control. (d) Apical colocalization of villin and transporters. (e, f) Permeability of sodium fluorescein (NaFl) and FITC-Dextran 4 kDa (FD4), both accumulating in the organoid lumen.

Supplementary Figure S2

Supplementary Figure S2: Live-cell imaging of intracellular calcium and acidification in WT organoids. (a) Calcium responses to 100 μ M ATP (upper panel) and 50 mM glucose (lower panel) in WT organoids. Ratio of fluorescence intensities F ($\lambda_{ex}340$ nm)/F ($\lambda_{ex}380$ nm) display changes in intracellular calcium levels according to the color legend. (b) Intracellular acidification of organoid epithelial cells upon treatment with the protonophore CCCP (upper panel) and 50 mM Gly-Sar (lower panel), ratio images. Ratio of fluorescence intensities F ($\lambda_{ex}490$ nm)/F ($\lambda_{ex}450$ nm) display changes in intracellular calcium levels according to the color legend.