sequences from the n	aked mole-rat (Kear	ne et al. 2014) and outgroup specie	es (Flicek et al. 2014).	
Order	Family	Species	Common name	Assembly/SRA ID
Rodentia	Bathyergidae	Bathyergus suillus	Cape dune mole-rat	SRR2141210
		Cryptomys hottentotus mahali	Lesotho mole-rat	SRR2141211
		Cryptomys h. natalensis	Natal mole-rat	SRR2141212
		Cryptomys h. pretoriae	Highveld mole-rat	SRR2141213
		Fukomys damarensis	Damaraland mole-rat	SRR2141214
		Georychus capensis	Cape mole-rat	SRR2141216
		Heliophobius emini	Silvery mole-rat	SRR2141215
		Heterocephalus glaber	Naked mole rat	HetGla_female_1.0
	Caviidae	Cavia porcellus	Guinea pig	cavPor3
	Muridae	Mus musculus	Mouse	GRCm38
		Rattus norvegicus	Rat	Rnor_5.0
	Spalacidae	Tachyoryctes splendens	East African root rat	SRR2141217
	Heteromyidae	Dipodomys ordii	Kangaroo rat	dipOrd1
	Sciuridae	Ictidomys tridecemlineatus	Thirteen-lined ground squirrel	spetri2
Lagomorpha	Ochotonidae	Ochotona princeps	Pika	pika
	Leporidae	Oryctolagus cuniculus	Rabbit	OryCun2.0
Primates	Hominidae	Homo sapiens	Human	GRCh37

Pan troglodytes

Chimpanzee

CHIMP2.1.4

Supplementary information

Kalina T. J. Davies, Nigel C. Bennett, Georgia Tsagkogeorga, Stephen J. Rossiter, Christopher G. Faulkes Family-wide molecular adaptations to underground life in African mole-rats revealed by phylogenomic analysis

Supplementary tables S1–S9

(See separate .xls files)

Supplementary table S10

generated via RNA-seq and the raw-reads have been deposited in GenBank (see below for SRA IDs). These data were combined with coding sequences from the naked mole-rat (Keane et al. 2014) and outgroup species (Flicek et al. 2014). Taxonomic classification and data source for species, and datasets, included in this study. The majority of mole-rat data were newly

Galagidae	Hylobatidae	
Otolemur garnettii	Nomascus leucogenys	Pongo abelii
Bushbaby	Gibbon	Orangutan
OtoGar3	Nleu1.0	PPYG2

Supplementary table S11 Sequencing and assembly statistics for the eight rodent transcriptomes produced by this study. Abbreviations: GC % – proportion of guanine-cytosine.

Species name	Read	# reads	# nucleotides	Q20 %	GC	# transcripts	Average	# cut	Average
	length (bp)				%		length	transcripts	cut length
Bathyergus suillus	2 x 100	18,175,296	3,635,059,200	95.52	48.97	176,294	614	177,332	604
Cryptomys h. mahali	2 x 100	17,253,040	3,450,608,000	95.46	48.65	318,549	574	320,282	564
Cryptomys h. natalensis	2 x 100	17,290,951	3,458,190,200	95.63	47.37	259,886	494	260,393	488
Cryptomys h. pretoriae	2 x 100	17,833,375	3,566,675,000	95.38	49.48	226,694	567	227,740	559
Fukomys damarensis	2 x 100	18,220,998	3,644,199,600	95.74	48.85	244,256	602	245,682	589
Georychus capensis	2 x 90	20,038,942	3,607,009,560	97.37	46.09	228,786	416	229,151	414
Heliophobius emini	2 x 100	17,410,109	3,482,021,800	95.79	41.42	105,595	367	105,685	366
Tachyoryctes splendens	2 x 100	18,135,605	3,627,121,000	94.49	49.26	237,399	630	238,843	619

Supplementary table S12

Ensembl gene IDs and gene symbols for the 64 candidate 'social' genes. Each gene is associated with at least one of the following GO terms: 'social behavior' (GO:0035176); 'grooming behavior' (GO:0007625); 'vocalization behavior' (GO:0071625) and 'regulation of grooming behavior' (GO:2000821). The total number of species per alignments and the number of mole-rat species included are listed. Alignments containing <4 taxa were not studied further.

Ensembl Gene ID	Gene name	Description	#Species
			(#mole-rats)
ENSG00000138279	ANXA7	annexin A7	11 (8)
ENSG00000198931	APRT	adenine phosphoribosyltransferase	11 (8)
ENSG00000101200	AVP	arginine vasopressin	4 (2)
ENSG00000166148	AVPR1A	arginine vasopressin receptor 1A	9 (7)
ENSG00000140488	CELF6	CUGBP, Elav-like family member 6	4 (2)
ENSG00000160716	CHRNB2	cholinergic receptor, nicotinic, beta 2 (neuronal)	4 (2)
ENSG00000182372	CLN8	ceroid-lipofuscinosis, neuronal 8 (epilepsy,	11 (8)
		progressive with mental retardation)	
ENSG00000174469	CNTNAP2	contactin associated protein-like 2	8 (6)
ENSG00000152910	CNTNAP4	contactin associated protein-like 4	7 (5)
ENSG0000040531	CTNS	cystinosin, lysosomal cystine transporter	9 (6)
ENSG00000123454	DBH	dopamine beta-hydroxylase (dopamine beta-	5 (2)
		monooxygenase)	
ENSG00000203797	DDO	D-aspartate oxidase	10 (7)
ENSG00000132535	DLG4	discs, large homolog 4 (Drosophila)	10 (7)
ENSG00000213551	DNAJC9	DnaJ (Hsp40) homolog, subfamily C, member 9	11 (8)
ENSG00000184845	DRD1	dopamine receptor D1	7 (4)
ENSG00000149295	DRD2	dopamine receptor D2	7 (4)
ENSG00000151577	DRD3	dopamine receptor D3	5 (2)
ENSG0000069696	DRD4	dopamine receptor D4	5 (2)
ENSG00000107404	DVL1	dishevelled, dsh homolog 1 (Drosophila)	9 (6)
ENSG00000185838	GNB1L	guanine nucleotide binding protein (G protein), beta polypentide 1-like	9 (6)
ENSG00000182771	GRID1	glutamate receptor ionotropic delta 1	8 (5)
ENSG0000176884	GRIN1	glutamate receptor jonotropic N-methyl D-	10(7)
	011111	aspartate 1	10 (1)
ENSG00000126010	GRPR	gastrin-releasing peptide receptor	6 (3)
ENSG00000120068	HOXB8	homeobox B8	<4
ENSG00000165704	HPRT1	hypoxanthine phosphoribosyltransferase 1	11 (8)
ENSG00000174775	HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene	10 (7)
		homolog	
ENSG00000197386	HTT	huntingtin	11 (8)
ENSG00000125538	IL1B	interleukin 1, beta	10 (7)
ENSG00000268944	IRAK1	Interleukin-1 receptor-associated kinase 1	5 (2)
ENSG00000133703	KRAS	v-Ki-ras2 Kirsten rat sarcoma viral oncogene	6 (3)
		homolog	

ENSG0000008735	MAPK8IP2	mitogen-activated protein kinase 8 interacting protein 2	9 (6)
ENSG00000166603	MC4R	melanocortin 4 receptor	7 (4)
ENSG00000268563	MECP2	methyl CpG binding protein 2 (Rett syndrome)	5 (2)
ENSG00000125863	MKKS	McKusick-Kaufman syndrome	11 (8)
ENSG00000166343	MSS51	MSS51 mitochondrial translational activator	8 (5)
ENSG00000105357	MYH14	myosin, heavy chain 14, non-muscle	6 (3)
ENSG00000169992	NLGN2	neuroligin 2	9 (7)
ENSG00000196338	NLGN3	neuroligin 3	7 (4)
ENSG00000146938	NLGN4X	neuroligin 4, X-linked	<4
ENSG00000279292	NLGN4Y	neuroligin 4, Y-linked	0
ENSG00000132911	NMUR2	neuromedin U receptor 2	4 (2)
ENSG00000112333	NR2E1	nuclear receptor subfamily 2, group E, member 1	8 (5)
ENSG00000179915	NRXN1	neurexin 1	8 (7)
ENSG00000110076	NRXN2	neurexin 2	9 (6)
ENSG0000021645	NRXN3	neurexin 3	6 (3)
ENSG00000101405	OXT	oxytocin/neurophysin I prepropeptide	<4
ENSG00000180914	OXTR	oxytocin receptor	6 (3)
ENSG00000141744	PNMT	phenylethanolamine N-methyltransferase	5 (2)
ENSG00000107758	<i>РРР3СВ</i>	protein phosphatase 3, catalytic subunit, beta isozyme	7 (4)
ENSG00000131238	PPT1	palmitoyl-protein thioesterase 1	11 (8)
ENSG00000171862	PTEN	phosphatase and tensin homolog	11 (8)
ENSG00000188710	QRFP	pyroglutamylated RFamide peptide	4 (2)
ENSG00000189056	RELN	reelin	4(1)
ENSG00000161681	SHANK1	SH3 and multiple ankyrin repeat domains 1	7 (6)
ENSG00000162105	SHANK2	SH3 and multiple ankyrin repeat domains 2	<4
ENSG00000251322	SHANK3	SH3 and multiple ankyrin repeat domains 3	6 (5)
ENSG00000108576	SLC6A4	solute carrier family 6 (neurotransmitter transporter, serotonin), member 4	8 (5)
ENSG00000165300	SLITRK5	SLIT and NTRK-like family, member 5	8 (5)
ENSG00000102359	SRPX2	sushi-repeat containing protein, X-linked 2	7 (4)
ENSG00000135569	TAAR5	trace amine associated receptor 5	4 (2)
ENSG00000184058	TBX1	T-box 1	9 (6)
ENSG00000180176	TH	tyrosine hydroxylase	6 (3)
ENSG00000163794	UCN	urocortin	<4
ENSG00000197969	VPS13A	vacuolar protein sorting 13 homolog A (S. cerevisiae)	8 (6)

Supplementary figure legends

Supplementary figure S1

Geographical distribution and divergence time between the mole-rat species included in this study. (a) Map showing the approximate ranges of bathyergid species in this study [adapted from (Bennett and Faulkes 2000; Bennett and Faulkes unpublished data)]. (b) Simplified phylogeny for the Bathyergidae indicating the six main clades/genera, together with the closest extant outgroup, the cane rat *Thryonomys swinderianus*, and based on mitochondrial 12S rRNA and cyt-*b* sequence data. Numbers on internal nodes and scale bar represent divergence times in millions of years ago (Myr) estimated using a molecular clock approach, and using the Bathyergid fossil *Proheliophobius* for calibration of genetic distances. Numbers in parentheses indicate current estimates of species numbers in each genus [data and figure adapted from (Faulkes et al. 1997; Faulkes et al. 2004; Ingram et al. 2004; Faulkes et al. 2010; Faulkes et al. 2011; Faulkes and Bennett 2013)].

Supplementary figure S2

Phylogenetic relationships between the Bathyergidae species under study, based on: (a) Maximum likelihood analysis of a partitioned dataset of 3,999 concatenated genes (1,754,367 codons), all nodes were recovered with 100% bootstrap support, and branch lengths correspond to the substitution rate. (b) Bayesian analysis of the 172 most informative gene partitions (60,783 amino acids) subsampled from the above dataset, all nodes unless otherwise shown, were recovered with a Bayesian posterior probability of 1.00.

Supplementary figure S3

Protein-protein interaction network between products encoded by genes identified as being under positive selection in mole-rats by branch-site models. Node size is scaled proportionally to the number of connections, and connection thickness corresponds to the confidence of the interaction, with a thicker line indicating stronger evidence. Evidence is based on combined interaction scores of the following lines of evidence: neighborhood, fusion, co-occurrence, homology, co-expression, experimental knowledge and text mining.

Supplementary figure S4

Distribution of Bathyergidae sociality across the phylogeny: the documented social states (Faulkes and Bennett 2013) are mapped onto tips (shaded circles). Inferred hypothetical evolutionary scenarios explaining the distribution of social structure across the family are shown along branches (shaded squares). The different forms of sociality are represented by the following colors: white – solitary; light grey – social + cooperative breeding; dark grey – social and black – eusocial.

Supplementary figure S5

Candidate 'social' genes found to be under positive selection in mole-rats and the guinea pig, using the Branch-site REL model. Documented social states (Faulkes and Bennett 2013) are mapped onto tips (shaded circles). The different forms of sociality are represented by the following colors: white – solitary; light grey – social + cooperative breeding; dark grey – social and black – eusocial. Supplementary references:

- Bennett NC, Faulkes CG. 2000. African mole-rats: ecology and eusociality: Cambridge University Press.
- Bennett NC, Faulkes CG. unpublished data.
- Faulkes CG, Bennett NC. 2013. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Phil. Trans. R. Soc. B 368:20120347.
- Faulkes CG, Bennett NC, Bruford MW, O'Brien HP, Aguilar GH, et al. 1997. Ecological constraints drive social evolution in the African mole-rats. Proc. R. Soc. Biol. Sci. B. 264:1619–1627.
- Faulkes CG, Bennett NC, Cotterill FPD, Stanley W, Mgode GF, et al. 2011. Phylogeography and cryptic diversity of the solitary-dwelling silvery mole-rat, genus *Heliophobius* (Family: Bathyergidae). J. Zool. 285:324–338.
- Faulkes CG, Mgode GF, Le Comber SC, Bennett NC. 2010. Cladogenesis and endemism in Tanzanian mole-rats, genus *Fukomys* (Family: Bathyergidae): A role for tectonics? Biol. J. Linn. Soc. 100:337–352.
- Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC. 2004. Phylogeographical patterns of genetic divergence and speciation in African molerats (Family: Bathyergidae). Mol. Ecol. 13:613–629.
- Flicek P, Amode MR, Barrell D, Beal K, Billis K, et al. 2014. Ensembl 2014. Nucleic Acids Res. 42:D749–D755.
- Ingram CM, Burda H, Honeycutt RL. 2004. Molecular phylogenetics and taxonomy of the African mole-rats, genus *Cryptomys* and the new genus *Coetomys* Gray, 1864. Mol. Phylogenet. Evol. 31:997–1014.
- Keane M, Craig T, Alföldi J, Berlin AM, Johnson J, et al. 2014. The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. Bioinformatics 30:3558–3560.

Figure S2a

