
Supplementary Materials

1 Preliminaries

We first briefly review some indexing data-structures: su�x array (Section 1.1)
and Burrows-Wheeler Transform (Section 1.2). Then, a modified index is de-
scribed in Section 1.3 that enables us to e�ciently extract exact match hits of
some fixed length strings.

1.1 The Su�x Array

Let T [1..n] be a genome of length n where the nucleotides are represented by
characters taken from the alphabet ⌃ = {a, c, g, t}. We assume that a special
character $ appears at the end of T , and it is assumed to be lexicographically
smaller than all the characters in ⌃. The su�x array SA

T

[1..n] of T is obtained
by sorting the su�xes of T in lexicographically increasing order, and setting
SA

T

[i] to be the starting position of the su�x in the ith position in this sorted
list. We will call each entry in SA

T

as an SA
T

-value.
Let P be a string. Suppose SA

T

[i] and SA
T

[j] are the lexicographically
smallest and largest su�xes respectively, having P as a prefix. We define the
interval [i, j] as the SA

T

range of P . The length of the SA
T

range of P is
j � i + 1. The entries SA[i + k] for k = 0, .., j � i gives all the locations in T
where P occurs. Note that if the SA

T

-range of P happens to be an interval of
the form [i, i], P occurs at a unique location in T .

1.2 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) of T is a permutation of T derived
from SA

T

. Given SA
T

, the BWT of T , denoted by B
T

, is obtained by the
formula B

T

[i] = T [SA
T

[i] � 1] for SA
T

[i] > 1; and B
T

[0] = $. BWT is highly
compressible and it can be stored using nH

k

+o(n)-bit space. BWT is a method
suitable for indexing large genomes. It requires around 750MB for a genome as
large as hg19.

With the help of some auxiliary data structures, BWT enables us to compute
the SA range of a pattern using backward search.

Lemma 1.1 (Backward Search) Consider a genome T . Given the BWT
B

T

and an auxiliary data structure of size o(n log n) bits. Let [i, j] be the SA
T

range of P . Then, the SA
T

range of yP can be computed in constant time.

Proof Let C(y) be the total number of characters in string T that are lex-
icographically smaller than y. C(y) for all y 2 ⌃ can be stored in O(log n)
bits.

Let Occ
S

be a function such that, for any y 2 A and 1 i n, Occ
T

(y, i) is
the number of occurrences of y in B

T

[1..i] and Occ(y, 0) = 0. As shown in [?],

we can store the Occ
T

data-structure using o(n log n)-bit space while allowing
constant time access to any entry Occ

T

(y, i).
If [i, j] is the SA

T

range of P , [?] showed that the SA
T

range of yP is
[C(y)+Occ

T

(y, i1)+1, C(y)+Occ
T

(y, j)]. Since the functions C() and Occ
T

()
can be computed in O(1) time, the lemma follows.

Furthermore, the following useful lemma can be shown to be true.

Lemma 1.2 (BWT Inversion) Given the permutation of T [i] under the BWT ,
and the auxiliary data structures in lemma 1.1, the permutation of T [i+1] under
the BWT can be obtained in O(1) time.

We can find the SA
T

range of any pattern P by starting o↵ with the empty
string, whose SA

T

range is [1, n], and searching backward the characters of P
using Lemma 1.1. This is called the backward search for P in T . If P does not
exist in T , the result of the backward search is not a valid interval.

If the SA
T

range of P is a valid interval [i, j], the following lemma enables
us to retrieve SA

T

[k] for each k = i, . . . , j in O((j � i+ 1)) time.

Lemma 1.3 Given an O((n log n)/)-bit auxiliary data-structure, for any k,
SA

T

[k] can be computed in O() time.

Proof As a pre-processing step, we sample and store each SA
T

[i], where i is
a multiple of some constant integer . We can compute an arbitrary SA

T

[k]
using this sampling and B

T

. If k is a multiple of , SA
T

[k] can be found from
the sampling. Otherwise, starting at l = k, by repeatedly applying Lemma 1.2
we count the number of steps s0 needed to arrive at the first point where l0 is a
multiple of . Then SA

T

[k] is given by SA
T

[s] � s0. This procedure needs on
average /2 applications of the lemma.

We choose = O(log n) in practice. In summary, using the BWT of T , we
can store the index using nH

k

+ o(n log n) bits and enable us to find all hits of
a pattern P using O(|P |+ occ log n) time where occ is the number of hits of P
in T .

If an SA
T

-range [i, j] is given, we can find all locations corresponding to it
by simply using Lemma 1.3 to calculate SA

T

[k] for i l j. However, this
basic method of converting SA

T

ranges to locations can be time consuming,
and we will next describe how to improve this step.

First we will describe how to e�ciently convert an SA
T

-value to the corre-
sponding genomic location on the fly while performing a backward search with
the following lemma.

Lemma 1.4 Let P be a substring of T . When performing backward search for

P , if the SA
T

-range corresponding to P [1..l] is in the form [i,i], Then P
occurs uniquely at the location SA[i]� (|P |� l).

Since SA
T

[i] is already sampled, if any backward search satisfies this condition,
we can obtain the location of P in constant time as soon as the search terminates.
For su�ciently long P , we can expect P to occur uniquely in T and to satisfy
the above condition.

1.3 Retrieving Hits for a Fixed Length Pattern

Although BWT is space-e�cient and can find the exact hits of a pattern, we
need an average of O(log n) time to retrieve each hit. When the list of hits is
long, it is time consuming to retrieve all hits.

We usually need to find hits of patterns having some fixed length l when
mapping reads. Below, we describe a simple data-structure that will speedup
the retrieval of such hits.

The basic observation is that, when l is long (say, > log|⌃| n), the SAT

-range
for a length-l pattern is usually short. In fact, assuming the genome sequence
is a random string, we can show that the expected size of the SA

T

-range for a
length-(log|⌃| n) pattern is 1. If we don’t store SA

T

values for patterns whose
SA

T

-ranges are short, the data-structure will be small enough.
On the other hand, if the SA

T

-range of a length l pattern is too long, the
pattern is more likely to be extracted from low complexity or repeat regions.
Since such patterns tend to be noisy, we will not use those hits.

Based on these two observations, our data-structure stores the SA
T

values
for patterns whose SA

T

-ranges are of size between � and D (� < D) as fol-
lows. Let P = {P1, . . . , Pr

} be the set of length-l substrings of T whose number
of hits in T are between � and D. Let [s

k

, e
k

] be the SA
T

-ranges of P
k

for
k = 1, 2, . . . , r. Note that the SA

T

-ranges of all these patterns do not over-
lap. We define the reduced su�x array RSA

T

to be an integer array formed
by retaining only the SA

T

values in [s
k

, e
k

] for all k = 1, . . . , r. SA
T

values
belonging to each [s

k

, e
k

] are kept sorted in their positional order. Further-
more, we also store two arrays S[1..r] and SUM [1..r] where S[k] = s

k

and

SUM [k] =
P

k�1
i=1 (ei�s

i

+1)+1. We denote our data-structure as L
T,l,�,D

, and
it consists of the BWT of T , RSA

T

, S and SUM .

Figure 1 shows an example. Consider the string “T = cccctgcggggccg$”. The
string contains 2-mers cc, cg, ct, gc, gg and tg. TheBWT of T is “tccgccgc$gggccg”.
Only the 2-mers cc, gg and cg appear more than once in T . Figure 1(b) lists
down the occurrences of each of these in T sorted by their location, along with
the SA-ranges. To construct L

T,2,2,10, we need to consider all 2-mers that ap-
pear at least twice and at most ten times, and the required data can be found in
Figure 1(c). In the Figure, the SA-ranges are sorted by their starting position.
Then, these starting positions are used as keys to the list of sorted locations
belonging to the corresponding SA-ranges. If we are to construct L

T,2,2,3, then
the entry for cc will be removed as it contains more than 3 entries. Table 1
shows that L

T,l,�,D

is space-e�cient in practice, for a large genome like hg19
and for � = 4 and D = 30, 000.

Now, given L
T,l,�,D

and the SA
T

-range [i, j] of a pattern P of length l, we can
use algorithm SA to Loc in Figure 2 to get all of its occurrences in T e�ciently.
If P occurs at most � times, or more than D times, we use the method given
in Lemma 1.3 to obtain each SA

T

[i], . . . , SA
T

[j]. Otherwise, we use L
T,l,�,D

to
find all occurrences.

l-mer size Size of L
T,l,�,D

18 2.5 GB
25 1.6 GB
30 495 MB
37 361 MB
68 244 MB
75 199 MB
90 140 MB
100 116 MB

Table 1: Size of the data structure L
T,l,�,D

for di↵erent values of l, where T is
the hg19 genome, � = 4 and D = 30, 000.

cc
[1,4]

1

2

3

12

gg
[11,13]

8

9

10

cg
[5,6]

7

13

gc
[9,10]

6

11

tg
[14,14]

5

ct
[7,7]

4

1

gg
[11,13]

8

9

10

cg
[5,6]

7

13

gc
[9,10]

6

11

1

3

5

5

9

11

(a)

(b)

S SUM

Figure 1: Illustration of the data structure for fast decoding of SA ranges for an
example string T = CCCCTGCGGGGCCG$. (a) shows the sorted positions of
every non-unique 2-mers in the string. The label on top of of each list indicates
the 2-mer and its SArange. (b) Data structure L

T,2,2,10 that indexes each 2-mer
by the starting position of each SA-Range. The 2-mers TG and CT are not
indexed as they occur uniquely in T . The 2-mers CC and GG do not appear as
they appear more than twice. See Section 1.3 for details.

2 Bat-Align Mapping Strategy

Consider a genome T and a read R. This section describes the mapping strategy
of Bat-Align. Our strategy first finds a set of candidate mapping locations
(called hits) of R in T . The set of candidate hits is found by incrementally
searching for the most likely combination of mismatches and indels. Based on
the quality information and Smith-Waterman alignment, the best location is
determined among them. Precisely, for every read R, our method performs
three steps:

1: SA to Loc([i, j], L
T,l,�,D

)
2:

3: if (j � i) > � and (j � i) D then
4: Binary search S for the key i;
5: if S[k] == i then
6: return RSA[SUM [k]], . . . , RSA[SUM [k + (j � i)]� 1];
7: else
8: return ;;
9: end if

10: else
11: H = ;;
12: for k = i, .., j do
13: L=location corresponding to k found by inverting BWT .
14: H = H [L
15: end for
16: return H;
17: end if

Figure 2: Algorithm SA to Loc([i, j], L
T,l,�,D

) to convert SA
T

-ranges to loca-
tions.

1. Finding candidate hits: This step identifies the hits of R that minimize the
number of mismatches and indels using two strategies Reverse alignment
and Deep scan;

2. Rescore and select the best hit: This step uses the quality scores and
Smith Waterman algorithm to rescore the hits and identify the best hit.

3. Calculate the mapQ score of the best hit and report it.

In the following subsections, we will describe these three steps.

2.1 Finding Candidate Hits

Given a read R, this step aims to incrementally find the hits of R with the
most likely combination of mismatches and indels. Its algorithm Gen Hits is
illustrated in Figure 3. we define a function F such that F (i) = (p

i

, q
i

), where
i, p

i

and q
i

are non-negative integers representing the number of mismatches
and indels in an alignment respectively.The algorithm Gen Hits incrementally
tries to map R allowing F (i) mismatch/indel combinations for i = 0, 1..,M . We
call this method of incremental scanning using F as Reverse alignment. If F (k)
is the first such successful mismatch/indel combination, and there are multiple
hits, we return all these hits. If there is a unique hit and k < M , we return all
hits having the mismatch/indel combinations F (k) and F (k + 1). We call this
step the Deep scanning step.

In real-life, the likelihood of an indel in a genome is an order of magnitude
less than that of a SNP and the likelihood of finding multiple indels becomes

1: Gen Hits(R,G, F,M)
2:

3: for i = 0 to M do
4: H1=Hits of R in G having F (i) mismatch/indel combinations.
5: if H1 is not empty then
6: if H1 contains unique hit and i < M then
7: H2=Hits of R having F (i+ 1) mismatch/indel combinations.
8: return H1 [H2.
9: else

10: return H1

11: end if
12: end if
13: end for

Figure 3: Algorithm Gen Hits to generate a candidate set of hits for examina-
tion

small as the length of R becomes small. If the sequencing is ideal and without
any errors, we can expect mismatches in the read R to appear at a rate equal
to the expected number of SNPs in a segment of length |R| in G. However,
empirical studies show that, for Illumina and SOLiD, the majority of mismatch
errors occur due to sequencing errors. A general heuristic for such platforms is
to set the mismatches in a read due to sequencing errors and SNPs to be about
4-5% of the read length. Furthermore, indels occur at a frequency of around 1
out 10k bases. Based on these figures, for a read of length around 75bp, we can
set one indel and four mismatches as a reasonable upper bound for the number
of indels and mismatches to be allowed in a mapping. For the default mode of
enumerating candidate hits, We set F�1(n1, n2) < F�1(n1 + 1, n2) for n1 4
and F�1(5, 0) < F�1(0, 1).

We use e�cient BWT-based methods to enumerate hits corresponding to
F (i). With the restriction stated above, i.e. assuming we allow only one indel,
we have two cases where F (i) is of the form (p

i

, 0) or (p
i

, 1). When F (i) = (p
i

, 0),
i.e. when only mismatches are allowed in R, we use the algorithm BatMis [?].
BatMis is a BWT-based algorithm that can be used to solve the k-mismatch
problem e�ciently. The following section describes the algorithm used to handle
the case of a read having one indel in detail.

2.1.1 Finding Indel Hits.

When F (i) = (p
i

, 1), we allow p
i

mismatches along with an indel. The algorithm
Find Indel is described in Figure 4. To find these hits, there are two cases. The
first case is that the indel appears in one half of the read. Then the half of the
read that does not contain the indel must contain at most p

i

mismatches only.
We identify hits in T having at most p

i

mismatches with one half of R as

1: Find Indel(R,G, p
i

)
2: {/* Case 1: Indel appears in one half of the read */}
3: X1= The set of p

i

mismatch hits of R[1..|R|/2] in G.
4: H1= The set of hits having p

i

mismatches and one indel obtained by Smith-
Waterman extension of hits in X1.

5: X2= The set of p
i

mismatch hits of R[|R|/2 + 1..|R|] in G.
6: H2= The set of hits having p

i

mismatches and one indel obtained by Smith-
Waterman extension of hits in X2.
{/* Case 2: Indel is not completely contain in either half of the read */}

7: for j = 0 to p
i

do
8: X

j

= The set of hits of R[1..l] in G having j mismatches.
9: Y

j

= The set of hits of R[|R|� l + 1..|R|] in G having j mismatches.
10: end for
11: for j = 0 to p

i

do
12: H = H [{ Hits in X

j

and Y
pi�j

that are within |R|� 2l + d bases from
each other.}

13: end for
14: Hits = The set of hits in H that can be extended to have p

i

mismatches
and one indel.

15: return H1 [H2 [Hits.

Figure 4: Algorithm Find Indel to find hits having one indel.

seeds and perform Smith-Waterman extension to recover locations having p
i

mismatches and one indel for the whole read R.
The second case is that the indel is not completely contained in either half but

is in the middle of the read, Find Indel2 is used. It will find 0, .., p
i

mismatch
hits of each l-mer su�x and prefix of R using the BatMis algorithm. Then it
will find the su�x and prefix locations that are at most |R|� 2l+ d bases apart
using the method described in Section 2.1.2. Here, the value for l should be
determined based on the maximum size of an insertion that is allowed. These
potential hit locations are further examined by aligning against R with the
Smith-Waterman algorithm, and those hits with p

i

mismatches and one indel
are reported.

2.1.2 E�ciently Pairing Two Patterns.

Given two patterns P1 and P2 of length l, we say that they can be paired if the
two patterns can be found within a distance d of each other, with P1 having the
least genomic co-ordinate. Let Occ

T

(P) denote the number of times the pattern
P occurs in T . We will describe now how to e�ciently find pairings of P1 and
P2 when L

T,l,�,D

is given and when Occ
T

(P1) < D and Occ
T

(P2) < D.

1. If Occ
T

(P1) < � and Occ
T

(P2) < �, we find all locations of P1 and P2.
Then these locations can be cross checked to obtain all pairings of P1 and
P2.

2. If Occ
T

(P1) < � and Occ
T

(P2) � �, we obtain all the locations of P2 from
L
T,l,�,D

. Since these are sorted by their position, we can check to see if any
occurrence of P1 can be paired with an occurrence of P2 by performing a
binary search.

3. If Occ
T

(P1) � � and Occ
T

(P2) < � , the above procedure can be modified
by looking up all the occurrences of P1 from L

T,l,�,D

.

4. If Occ
T

(P1) � � and Occ
T

(P2) � �, all the occurrences of P1 and P2 are
obtained from L

T,l,�,D

. These two lists are merge sorted. If an occurrence
of P1 is followed by an occurrence of P2, and they satisfy the distance
constraint, we report them.

2.2 Reporting Hit.

Sequencing data usually produces a quality score that indicates the reliability
of a base call. If the probability of a base call at position i being correct is
P (i), the quality score Q(i) assigned to location i is given by the equation
P (i) = 1 � 10�Q(i)/10. Assuming that there is no bias to a particular set
of nucleotides when a base gets miscalled with another nucleotide, then the
probability of a base being miscalled at location i can be calculated by the
formula 1 � P (i)/3. For a given alignment, we compute an alignment score
based on an a�ne scoring scheme. The score for a match or a mismatch at R[i]
is the phred scaled value of P (i). When indels are present, positive gap open
and extend values are chosen.

From Section 2.1, a candidate setX of mapping locations can be obtained for
each read. Next, for each alignment in X we calculate the alignment score. If a
unique alignment exists, it is reported. Otherwise, if the di↵erence of alignment
scores between the two smallest alignment scores is larger than some suitable
cuto↵(set as 10), the alignment with the smallest score is reported.

2.2.1 Increasing Sensitivity and Accuracy.

In Section 2.1 we described our basic criteria for finding a suitable set of hits.
This criteria will miss enumerating the correct hit under three cases.(1) The
read contains mismatches and indels outside the scope the algorithm is set to
handle. (2) The read contains only m mismatches, but have a multiple mapping
having less than m mismatches or a unique mapping having less than m � 1
mismatches.(3) A read containing indels with m mismatches might get mapped
as pure mismatch hit or as an indel hit having less than m mismatches. We use
several methods to recover these three kinds of hits.

During the stage described in Section 2.1.1, we might recover possible hits
having more than the number of mismatches and indels specified by the basic
algorithm. Instead of discarding them we will add them to the pool of candi-
date hits. If a hit found in the mismatch scanning stage turns out to have an
indel when the full-read extension is done, an indel scan is forced. If the best
alignment score happens to be larger than that of a single indel hit, again an

indel scan is forced. Finally, for reads having more than one mismatch, the
indel scanning is performed if the average quality of bases having a mismatch
is higher than that of the average base quality of the read. We allow one high
quality mismatch to consider the possibility of a SNP.

2.2.2 Making the Algorithms Faster.

We can use some strategies to speed-up the algorithm. These will result in a
loss of accuracy and sensitivity. When extending the candidate hits along the
full read at the indel stage. Instead of extending all the hits, we terminate the
extension process, if for K successive steps, the extension has not resulted in an
improvement in the alignment score. Furthermore, the extension can be limited
to those hits already having an indel when an indel scan is forced.

The methods in Sections 2.2.1 and 2.2.2 has been used in various combina-
tions to produce several modes of scanning that trades speed with accuracy and
sensitivity.

2.3 Calculating Mapping Quality

The mapping quality is calculated as a measure to indicate the accuracy of
the alignment, ranging from 0 (indicate a mapping without any confidence) to
a value between 1 and 60, indicating the lowest and highest confidences for
a hit that can be reported unambiguously. The mapping quality takes into
account factors including the sequencing quality, the likelihood of the alignment
appearing in the reference genome and the likelihood of the hit appearing by
chance. We give an a�ne gap score S

ref

to the final alignment to measure the
likelihood of the sequence appearing in the reference. During the alignment
stage, we count how many alignments S

multi

the first half of the read will have
when 0 mismatches are allowed. A large value for S

multi

indicates a higher
chance that the read will align by merely by chance. The final score S

prior

uses
quality information to factor in the prior probability of the read aligning at the
reported location as explained below.

Let A
top

be the best alignment returned by the aligner. Then we can calcu-
late the prior probability to be

p(A
top

|G,R) =
p(R|G,A

top

)
P|G|

i=1 p(R|G, x)
,

where p(R|G,A
j

) is the chance of R aligning at position A
top

. A higher value of
p(R|G,A

top

) indicates a higher prior probability. For mismatch hits, p(R|G,A
j

) =
10�(

P
i Qi)/10, where Q

i

are the quality scores at the mismatched bases. We set
S
prior

= p(R|G,A
top

).
The final mapping score is calculated by the formula 60�k1Sref

�k2 min(10, S
multi

)+
k3Sprior

, where k1, k2 and k3 are three positive constants that are empirically
determined.

3. Evaluation on simulated reads

3.1 ART-simulated reads
We have simulated three dataset to evaluate the performance of the various methods in the main article. The
mappings were stratified accordingly to the mapQ that the corresponding program assigns to them. The results
were plotted with cumulative number of alignments, in order of decreasing mapQ, and were used to plot
Supplementary Figure 3.1.

Supplementary Figure 3.1. Cumulative alignments stratified by decreasing mapQ as reported by their
respective aligners in the form of ROC graphs. S.Figure A/B/C for 75/100/250 bp reads.

71#

76#

81#

86#

91#

96#

0# 1# 2# 3# 4# 5#

Co
rr
ec
t'r
ea
d'
al
ig
nm

en
ts
'

x'
10
00
0'

Incorrect'read'alignments'

x'10000'

75'bp'Illumina9like'(1'million'reads)'

40#

50#

60#

70#

80#

90#

100#

0# 1# 2# 3# 4# 5#

Co
rr
ec
t'r
ea
d'
al
ig
nm

en
ts
'

x'
10
00
0'

Incorrect'read'alignments'

x'10000'

100'bp'Illumina9like'(1'million'reads)'

85#

86#

87#

88#

89#

0# 0.01# 0.02# 0.03#

Co
rr
ec
t'r
ea
d'
al
ig
nm

en
ts
'

x'
10
00
0'

Incorrect'read'alignments'

x'10000'

250'bp'Illumina9like'(1'million'reads)'

Batalign#

Bow6e2#

BWA:Short#

BWA:SW#

BWA:Mem#

GEM#

SeqAlto#

A

B

C

Similar'to'the'experiments'performed'in'GEM’s'paper,'we'also'validated'the'top'10'hits'reported'by'each'
method.'The'complete'breakdown'of'this'validation'by'the'first'(or'best)'alignment,'as'ordered'by'their'
respective'aligner,'can'be'found'in'Supplementary'Table'3.1.'From'this'table,'we'can'see'that'BatAlign'has'
reported'the'most'number'of'correct'hits'as'topIranked'hits'across'the'3'datasets'of'various'readIlengths.'It'
was'only'for'the'total'correct'hits'on'the'250'bp'dataset'that'BatAlign'is'second'to'GEM'by'a'small'margin'of'<'
0.01%.'Upon'inspection'on'the'extra'reads'which'GEM'has'reported,'BatAlign'found'them'to'be'repetitive'
and'it'was'by'chance'that'these'hits'were'not'represented'as'any'of'the'top'10'hits'for'these'reads.'

'

Supplementary'Table'3.1.'Number'of'correct'hits'ordered'by'the'rank'that'each'aligner'reported.'

1 2 3 4 5 6 7 8 9 10
BatAlign 933560 11604 732 622 745 335 146 116 90 68 948018
Bowtie2 866410 10873 4095 1541 551 314 192 142 112 77 884307
BWA7SW 786309 2 0 0 0 0 0 0 0 0 786311
BWA7Mem 897581 7 7 7 7 7 7 7 7 7 897581
GEM 893162 13603 5243 2231 1074 688 555 375 323 272 917526
BWA7Short 834519 10008 3535 1226 408 160 83 52 43 26 850060
Seqalto 885208 5692 1712 723 306 164 102 63 33 32 894035

1 2 3 4 5 6 7 8 9 10
BatAlign 924272 7599 941 728 851 332 182 108 101 63 935177
Bowtie2 866310 8685 2833 948 254 110 69 42 23 5 879279
BWA7SW 794661 7 0 0 0 0 0 0 0 0 794668
BWA7Mem 912562 7 7 7 7 7 7 7 7 7 912562
GEM 875333 10327 3533 1445 638 377 283 193 163 178 892470
BWA7Short 484558 5207 1747 662 211 112 79 48 20 13 492657
Seqalto 890336 1821 515 194 91 44 38 11 3 8 893061

1 2 3 4 5 6 7 8 9 10
BatAlign 894799 6394 732 824 225 175 107 98 53 50 903457
Bowtie2 892350 6245 1269 346 184 131 83 62 49 34 900753
BWA7SW 894395 1 0 0 0 0 0 0 0 0 894396
BWA7Mem 881193 7 7 7 @ 7 7 7 7 7 881193
GEM 895450 5999 1203 319 201 116 92 79 50 46 903555
BWA7Short 894658 5615 800 67 0 0 0 0 0 0 901140
Seqalto 894661 3775 296 77 41 33 14 9 9 9 898924

75bp@dataset

#Correct@hits Sum@of@
correct@hits

100bp@dataset

#Correct@hits Sum@of@
correct@hits

Rank

Aligner

Rank

Aligner

Rank

Aligner

250bp@dataset

#Correct@hits Sum@of@
correct@hits

'

3.2 Simulated Indel-abberrant reads
We have also simulated a new read class – Indel-abberrant datasets for analyzing the performance of the
various programs on mapping indel-aberrant reads. We have tested various programs on read set with
indel ranging from 1bp to 8bp long; each with 1 million 75 bp reads. For each of the indel-lengths, we
further classified the simulated-variant into insertions or deletion class. Supplementary Table 3.2 detailed
on the calculated F-measures in the main paper.

Supplementary Table 3.2. Results on mapping Indel-abberrant datasets by various programs

Methods'
DeleteIaberrant'

Correct'hits' Wrong'hits' FImeasure'
BatAlign' 856069' 5365' 92.0%'
Bowtie2' 819007' 70844' 86.7%'
BWAIShort' 764699' 2580' 86.5%'
BWAISW' 719140' 22798' 82.6%'
GEM' 833640' 38252' 89.1%'
SeqAlto' 813325' 7593' 89.3%'
BWAIMem' 833994' 3746' 90.8%'

Methods'
InsertIaberrant'

Correct'hits' Wrong'hits' FImeasure'
BatAlign' 855681' 5586' 91.9%'
Bowtie2' 818760' 70977' 86.7%'
BWAIShort' 764275' 2674' 86.5%'
BWAISW' 718737' 23051' 82.5%'
GEM' 833295' 38395' 89.0%'
SeqAlto' 812779' 7526' 89.3%'
BWAIMem' 833396' 3891' 90.7%'

3.3 Reads from a RSVsim rearranged genome
WGSIM'was'used'to'simulate'2x5Mx100bp'reads'from'hg19Ichr21'for'the'analysis'of'alignmentI
performance'of'the'compared'methods'in'this'section.'Reads'were'simulated'with'the'default'of'2%'
sequencing'errors'and'1%'polymorphism'and'aligned'back'to'the'original'UCSC'hg19'reference'genome.'
Variants'are'called'using'Samtools'and'Vcftools.'

We'realized'that'different'affine'gap'penalty'scores'used'by'different'aligners'could'result'in'different'
clipping'lengths'of'the'reads'in'their'corresponding'alignments.'Clipping'will'omit'possible'coverage'
above'sites'of'polymorphic'variants'even'when'their'alignments'correct'reflect'the'origin'of'the'
sequenced'read.'In'order'to'minimise'this'bias,'we'only'consider'variants'that'are'not'within'50'bp'of'
each'other.'

Below,'we'tabulated'the'FImeasures'of'the'called'variants'from'the'alignments'of'their'respective'
aligners'at'various'depthIcutoff.'

'

Supplementary'Table'3.3.'FImeasures'of'called'SNVs'and'Indels'from'WGSIMIsimulated'reads'at'various'
depthIcutoff'thresholds.'

Methods'
FImeasures'of'SNVIcalling'(at'

various'depthIcutoff)'
'

Methods'
FImeasures'of'IndelIcalling'(at'

various'depthIcutoff)'

2' 5' 10'
'

2' 5' 10'
BatAlign' 99.4%% 99.4%% 99.3%%

'
BatAlign' 86.3%% 86.3%% 86.2%'

Bowtie2' 98.0%' 98.4%' 96.0%'
'

Bowtie2' 74.9%' 77.4%' 73.5%'
BWAIShort' 99.0%' 99.0%' 98.9%'

'
BWAIShort' 84.6%' 84.7%' 84.2%'

BWAISW' 98.5%' 98.5%' 98.3%'
'

BWAISW' 85.0%' 85.0%' 84.9%'
GEM' 96.6%' 95.6%' 94.3%'

'
GEM' 62.4%' 62.2%' 61.6%'

SeqAlto' 99.0%' 99.0%' 98.9%'
'

SeqAlto' 84.2%' 84.2%' 84.1%'
BWAIMem' 99.1%' 99.1%' 99.0%'

'
BWAIMem' 86.3%% 86.3%% 86.3%%

'

4 Evaluation on real reads

4.1 1 million reads data sets
We have downloaded three dataset, DRR000614, SRR315803 and SRR850313 to evaluate the
performance of the various methods in the main article. From each of the dataset, 1 million read were
extracted and mapped by the various stated programs. The mappings were stratified accordingly to the
mapQ which the corresponding program assigned to them. The results were plotted with cumulative
number of alignments, in order of decreasing mapQ of the ‘head’ alignment, in Supplementary Figure 4.1.

Supplementary Figure 4.1. Cumulative concordant & discordant alignments stratified in order of
decreasing mapQ as reported by their respective aligners in the form of ROC graphs.

!

!
! !

70#

75#

80#

85#

0# 1# 2#

C
on

co
rd

an
t r

ea
d

al
ig

nm
en

ts

x"
10
00
0"

Discordant"read"alignments"

x"10000"

76"bp"real"Illumina"(1"million"reads)"

BatAlign#

Bow2e2#

BWA5SW#

BWA#

SeqAlto#

BWA5Mem#

75#

80#

85#

0# 1# 2#

C
on

co
rd

an
t r

ea
d

al
ig

m
en

ts

x"
10
00
0"

Discordant"read"alignments"
x"10000"

101"bp"real"Illumina"(1"million"reads)"

60#

65#

70#

75#

80#

85#

90#

0# 1# 2#

C
on

co
rd

an
t r

ea
d

al
ig

m
en

ts

x"
10
00
0"

Discordant"read"alignments"

x"10000"

150"bp"real"Illumina"(1"million"reads)"

A

B

C

4.2 Evaluation on life-sized data
For'real'WGS'data,'we'have'only'used'the'primary,'nonIsecondary'alignment'reported'for'each'read'
from'the'compared'methods.'On'WGS'data,'we'realized'that'BreakDancer'might'miss'an'SV'if'read_1'is'
a'breakpointIspanning'read.'In'this'case,'either'the'primary'or'the'supplementary'alignment'will'form'a'
concordant'readIpair'alignment'with'read_2'and'can'elude'the'discovery'of'a'structural'variant.'800'bp'
insert'size'from'ERP001196’s'11T,'deImultiplexed'from'4'lanes,'were'used'as'the'discovery'set'for'SNVI
callings.'Results'of'the'callings,'with'variant'scores'>=30,'were'tabulated'in'Supplementary'Table'4.1'and'
4.2.'

Supplementary'Table'4.1.'Comparison'on'the'number'of'SNVs'recalled'from'published'and'validated'
SNVs'of'Patient'11T'at'various'depth'cutoff.'Best'results'are'in'bold.'

Methods
Intersect with published 11T data

(with different depth-cutoff)
2 5 10

BatAlign 45 42 37
Bowtie2 0 0 0
BWA 42 40 35
BWA-SW 44 41 36
GEM 43 41 35
SeqAlto 1 1 0
BWA-Mem 45 42 37

'

Supplementary'Table'4.2.'Total'number'of'SNVs'called'from'data'of'Patient'11T'at'various'depthI
ctRutoff.'

Methods
Total SNVs called at various depth cutoff

2 5 10
BatAlign 2984901 2839346 2207313
Bowtie2 3003669 2506634 1098618
BWA 3052128 2939975 2372334
BWA-SW 2798359 2668373 2063522
GEM 4015855 3837328 3075882
SeqAlto 237425 172190 123160
BWA-Mem 3159183 3029818 2439042

'

The'library'used'had'~16X'in'sequencing'depth.'A'total'of'80'validated'SVs'were'[27]'used'for'this'comparison.'

5 Parameters used for all compared programs

Single-end Read Settings

Bat-Align (Default)
./penguin –g <INDEX> -q <INPUT > -o <OUTPUT>

Bat-Align (Fast)
./penguin –g <INDEX> -q <INPUT > -o <OUTPUT> --mode=vfast --swlimit=10

Bat-Align (Turbo)
./penguin –g <INDEX> -q <INPUT > -o <OUTPUT> --boost=5 --mode= vfast --swlimit=10

Bowtie2
./bowtie2 --local -x <INDEX> -U <INPUT > -S <OUTPUT>

BWA-SW
./bwa bwasw –f <OUTPUT> <INDEX> <INPUT>

GEM
./gem-mapper –q offset-33 –I <INDEX> -i <INPUT> -o <OUTPUT.gem>
./gem-2-sam –I <INDEX> -i <INPUT.gem> -o <OUTPUT> -q offset-33

BWA-short
./bwa aln <INDEX> <INPUT> > <SAI>
./bwa samse –f <OUTPUT> <INDEX> <SAI> <INPUT>

SeqAlto
./seqalto_basic align <INDEX> -1 <INPUT> > <OUTPUT>

BWA-Mem
./bwa mem -M <INDEX> <INPUT>

To investigate best (or first) correct alignments of the various methods, we had to input additional options
for the programs. We listed the options for the programs which needed it to report 10 multi-hits in its
output below. This was used in the comparisons of multi-hits in Evaluation on ART-simulated reads of
the main paper.

Bat-Align used “--tophits 10”. Bowtie2 used “-k 10”. BWA-short used “-n 10”. BWA-Mem used “-a”.
The other programs prints multi-hits by default and the number, which they can report, cannot be
restricted manually by parameter-input.

Paired-end mapping

Bat-Align (Default)
./penguin –g <INDEX> -q <INPUT1 > -q <INPUT2 > -o <OUTPUT>

Bowtie2
./bowtie2 --local -x <INDEX> -1 <INPUT1> -2 <INPUT2> -S <OUTPUT>

BWA-SW
./bwa bwasw –f <OUTPUT> <INDEX> <INPUT1> <INPUT2>

GEM
./gem-mapper –q offset-33 –I <INDEX> -1 <INPUT1> -2 <INPUT2> -o <OUTPUTtmp> -p
./gem-2-sam –I <INDEX> -i <OUTPUTtmp>.gem -o <OUTPUT> -q offset-33

BWA-short
./bwa aln <INDEX> <INPUT1> > <SAI1>
./bwa aln <INDEX> <INPUT2> > <SAI2>
./bwa sampe –f <OUTPUT> <INDEX> <SAI1> <SAI2> <INPUT1> <INPUT2>

SeqAlto
./seqalto_basic align <INDEX> -1 <INPUT1> -2 <INPUT2> > <OUTPUT>

BWA-Mem
./bwa mem -M<INDEX> <INPUT1> <INPUT2>

6 Evaluation on running time

6.1 ROC curves of Bat-Align (different modes)
We'tabulated'the'mapping'runtimes'from'all'the'programs'Table'5'of'the'main'article.'The'various'
modes'of'BatIAlign'have'attained'a'better'ROC'curves'as'shown'below.'All'the'discussed'modes'of'BatI
Align'in'the'main'article'have'also'achieved'competitive'running'times'as'compared'to'the'other'
programs.''

Supplementary Figure 6.1. ROC curves plotted from different modes of Bat-Align and other methods on
1 millions reads extracted from SRR315803.

80#

81#

82#

83#

0# 0.2# 0.4# 0.6# 0.8# 1# 1.2# 1.4# 1.6# 1.8# 2#

Co
nc
or
da

nt
)m

ap
pi
ng
s)

x)
10
00
0)

Discordant)mappings) x)10000)

BatAlign#Default#

Bow8e2#

BWA:short#

BWA:SW#

BWA:Mem#

GEM#

SeqAlto#

BatAlign#Fast#

BatAlign#Turbo#

