

Figure S5

Figure S10

Table C1	The oligon	ualaatidaa an	d nuimana	formloamid	acmeturation
I able SL.	т пе опуон	ucieolides an	u primers	ior diasiniu	I CONSEFUCIÓN

Primer name	Sequence 5' to 3'
shCtrl forward	GATCCTGGCGGCGAGTGAAGTACGTGATAAGTGTGCTG
Shear for ward	TCCTTATCACGTACTTCACTCGCCGCCATTTTTGGAAA
shCtrl reverse	AGCTTTTCCAAAAATGGCGGCGAGTGAAGTACGTGATA
	AGGACAGCACACTTATCACGTACTTCACTCGCCGCCAGG
shGFP forward	GATCCCGAAGCAGCACGACTTCTTCGTGTGCTGTCCGA
	AGTCGTGCTGCTTCTTTTGGAAA
shGFP reverse	AGCTTTTCCAAAAAGAAGCAGCACGACTTCTTCGGACA
	GCACACGAAGAAGTCGTGCTGCTTCGG
shJ6-2 forward	GATCCCCGATGAACCACAAGAGCAAGTGTGCTGTCCTT
	GCTCTTGTGGTTCATCGTTTTTGGAAA
shJ6-2 reverse	AGCTTTTCCAAAAACGATGAACCACAAGAGCAAGGAC
	AGCACACTTGCTCTTGTGGTTCATCGGG
shJ6-3 forward	GATCCCGCTGACACCCAGAGAACAAGTGTGCTGTCCTT
	GTTCTCTGGGTGTCAGCTTTTTGGAAA
shJ6-3 reverse	AGCTTTTCCAAAAAGCTGACACCCAGAGAACAAGGAC
	AGCACACTTGTTCTCTGGGTGTCAGCGG
pBABE-JMJD6	CCCGGATCCCTCACGATGAACCACAAGAGCAAG
forward	
pBABE-JMJD6	CGGTCGACTTATCATTTGTCATCGTCGTCCTTGTAGTCC
reverse	CTGGAGGAGCTGCGCTC
pcDNA3.1-JMJD6	same as pBABE-JMJD6
forward	
pcDNA3.1-JMJD6	CGAAGCTTTTATCATTTGTCATCGTCGTCCTTGTAGTCC
reverse	CTGGAGGAGCTGCGCTC
pcDNA3.1-HIF1AN	CCCGAATTCGTAGAGATGGCGGCGACGGCAGCC
forward	
pcDNA3.1-HIF1AN	CGAAGCTTTTATTATTGTCATCGTCGTCCTTGTAGTCG
reverse	TTGTAACGGCCTTTAAT
JMJD6	GCGTTCTGGAACTGGGATTGCCATCGCCCCTCTGGGG
H187AD189A	
forward	
JMJD6	CCCCAGAGGGGGGGGATGGCAATCCCAGTTCCAGAACGC
H187AD189A	
reverse	
GST-JMJD6 2-414	GCGGATCCAACCACAAGAGCAAGAAGCGCATC
forward	
GST-JMJD6 2-414	CCCAAGCTTTTATTTGTCATCGTCGTCCTTGTAGTCCCT
reverse	GGAGGAGCTGCGCTCTTTGCT

Table	S2 .	The	primers	for	gene	expression	analysis	

Primer name	Sequence 5' to 3'
Jmjd6 forward	GAGCGCCTCAAAAGGAAATA
Jmjd6 reverse	TGGGCACCTTGTAGTCTTCC
<i>Pparγ2</i> forward	GCATGGTGCCTTCGCTGATGC
<i>Pparγ2</i> reverse	AGGCCTGTTGTAGAGCTGGGT
$Cebp\alpha$ foward	CCGGCCGCCTTCAACGAC
$Cebp\alpha$ reverse	CTCCTCGCGGGGGCTCTTGTTT
<i>Cebp</i> β forward	TGGACAAGCTGAGCGACGAG
$Cebp\beta$ reverse	TGTGCTGCGTCTCCAGGTTG
<i>Cebp</i> δ forward	TTCAGCGCCTACATTGACTC
<i>Cebpδ</i> reverse	TGTGGTTGCTGTTGAAGAGG
Srebp1c forward	AGCTGTCGGGGTAGCGTCTG
Srebp1c reverse	GAGAGTTGGCACCTGGGCTG
Fasn forward	CGTGTTGGCCTACACCCAGAGCT
Fasn reverse	GGCAGCAGGGCCTCCAGCACCTT
Fabp4 forward	GCGTGGAATTCGATGAAATCA
Fabp4 reverse	CCCGCCATCTAGGGTTATGA
AdipoQ forward	CAGTGGATCTGACGACACCA
AdipoQ reverse	CGAATGGGTACATTGGGAAC
5S rRNA forward	GTCTACGGACATACCACCCTG
5S rRNA reverse	TACAGCACCCGGTATTCCCAG

 Table S3. The primers for ChIP assay

Name	Sequence 5' to 3'
<i>Pparγ2</i> -9.5kb forward	TTCTTCCCAGTAGGAACTGCAT
<i>Pparγ2</i> -9.5kb reverse	GATCACTCAGTTGGCATTTCTC
<i>Pparγ2</i> -0.3kb forward	TGGCCAAATACGTTTATCTGG
<i>Pparγ2</i> -0.3kb reverse	CCAGTGACCCACACATTCACTG
<i>Pparγ2</i> TSS forward	ATTCCCACCTCTCCCAAATA
<i>Pparγ2</i> TSS reverse	GCTCTGGGTCAACAGGAGAA
<i>Ppary2</i> +20kb forward	CGAGTCTGTGGGGGATAAAGC
<i>Ppary2</i> +20kb reverse	CCAAAACAACTCCCCACAAC
<i>Pparγ2</i> +96kb forward	CTTGGGAGCTACAGCCTTGTG
<i>Ppary2</i> +96kb reverse	GCTGTGGTGAAACGACAGTTATTA
<i>Ppary2</i> +100kb forward	CCGGGCTCCCTAGATGTAGAC
$Ppar\gamma 2 + 100$ kb reverse	ACCCTTTCTGAGCGACAACCT
<i>Cebp</i> α -0.3kb forward	CTCCCTAGTGTTGGCTGGAA
$Cebp\alpha$ -0.3kb reverse	GGTGAGTGGGGAGCATAGTG
$Cebp\alpha$ TSS forward	GCCCGACCCTCTATAAAAGC
$Cebp\alpha$ TSS reverse	GGCTCCACCTCGTAGAAGTC
<i>Cebp</i> α +2.2kb forward	GCAGTGTGCACGTCTATGCT
$Cebp\alpha$ +2.2kb reverse	AGCCCACTTCATTTCATTGG
$Cebp\alpha$ +8kb forward	CACAGTGTCTGCTCGCTGTT
$Cebp\alpha$ +8kb reverse	ATTACAGTGCCGCCAGGTAG
<i>Cebp</i> α +37kb forward	CCCCAATCTTCCCTCAAATGA
$Cebp\alpha$ +37kb reverse	GGAGCCCGGAACCAGAA
$Cebp\beta$ -0.4kb forward	CGTGTAGCTGGAGGAACGAT
$Cebp\beta$ -0.4kb reverse	CTCGGGAACACGGAGGAG
$Cebp\delta$ -0.1kb forward	AGGAGGGAAGGCAAGGAGT
<i>Cebpδ</i> -0.1kb <i>reverse</i>	CTTTTCTAGCCCCAGCTGAC

Figure S1. JMJD6 antisera and antibodies specifically recognize *in vitro* translated and *in vivo* JMJD6 protein. Representative western blots probed with (A) the JMJD6 antisera, (B and C) the commercial antibodies for JMJD6, and (D) the commercial antibody for HIF1AN, a different JmjC protein. JMJD6 and HIF1AN proteins were in vitro translated from 1 µg of the pcDNA3.1(-) plasmids encoding either FLAG-tagged mouse JMJD6 or HIF1AN using a TNT Quick coupled Transcription/Translation Systems (Promega) according to the manufacturer's instructions. 15 μ l of the in vitro translated mixture was run on 10% SDS-PAGE and Western blotting was performed. (E) Representative western blots for JMJD6 and HIF1AN expression in the 24 h posttransfected C3H10T1/2 cells. 2 µg of the pcDNA3.1(-) plasmids encoding either FLAGtagged mouse JMJD6 or HIF1AN, or the empty vector were transiently transfected into C3H10T1/2 cells using Lipofectamine 2000 according to the manufacturer's instructions. 20 µg of the total cell lysate was run on 10% SDS-PAGE for electrophoresis and Western blotting. β -ACTIN was probed as a loading control. Red asterisks indicate the bands corresponding to the target monomer and oligomeric proteins.

Figure S2. JMJD6 oligomerization in the C3H10T1/2 cells during adipogenic differentiation. A representative western blot for JMJD6 levels in undifferentiated (day 0) and in differentiating (day 1 to 6) C3H10T1/2 cells. The oligomeric JMJD6 protein bands (~130kDa) are indicated by the red asterisk.

Figure S3. Two distinct control shRNAs, shCtrl and shGFP, did not affect the adipogenic differentiation of C3H10T1/2 cells. (A) Representative Oil Red O staining images, (B) the levels of Oil-Red O staining, and (C) the protein levels of PPAR γ and C/EBP α from the cells as indicated.

Figure S4. JMJD6 knockdown had no effect on C/EBPβ and C/EBP8 protein stability. (A) Representative western blots for C/EBPβ and C/EBP8 protein levels upon cycloheximide treatment. The 3 h post-induction cells were treated with 100 µg/ml cycloheximide. The total cell lysates were harvested every hour for 5 additional hours in the presence of cycloheximide. β-ACTIN was probed as a loading control. **(B-D)** C/EBPβ(LAP), C/EBPβ(LIP) and C/EBP8 protein levels in two independent experiments (n=2) were quantified by ImageJ. The protein levels were normalized to β-ACTIN loading control and were presented as the relative expression levels to the 0 h sample (mean, n=2).

Figure S5. The level of C/EBP β phosphorylation is proportional to total C/EBP β levels both in the control (shCtrl) and in the JMJD6 knockdown cells (shJ6-3) throughout the early phase of differentiation. The levels of C/EBP β and phosphorylated C/EBP β in Figure 4A were quantified by ImageJ.

Figure S6. Calling the putative enhancers using the published DHS-seq and ChIP-seq datasets. The DHS-seq datasets (GSE27826) and ChIP-seq datasets (GSE56872 and GSE50466) were uploaded to Integrative Genomics Viewer. (A) Screenshot of *Ppary2*

locus. (B) Screenshot of $Cebp\alpha$ locus. Blue bars indicate the regions for primer design. P: promoter; E: putative enhancer; GB: gene body.

Figure S7. Inducible binding of JMJD6 at the *Ppary2* and *Cepba* loci during differentiation. (A-B) ChIP of JMJD6 at the *Ppary2* and *Cebpa* loci in the undifferentiated (0h post-induced) and in the differentiating (24h post-induced) C3H10T1/2 cells. The values are presented as the average % input from three independent experiments (S.E.M, n=3, *p<0.05, **p<0.01). (C) The binding of JMJD6 at the *Cebpβ* and *Cebpδ* promoters was examined as negative controls. The values are presented as the average % input from three independent experiments (S.E.M, n=3, n=3, n=3). (S.E.M, n=3, n=3).

Figure S8. Ectopic expression of *Cebpβ* and *Cebpδ* by introduction of plasmid or *in vitro* synthesized RNA. (A-B) *Cebpβ* and *Cebpδ* mRNA levels in the plasmidtransfected cells. The cells were transfected with the plasmids encoding either C/EBPβ or C/EBPδ or empty vector for 24 h and then harvested for gene expression analysis. (C-D) *Cebpβ* and *Cebpδ* mRNA levels in the RNA-transfected cells. The cells were transfected with the *in vitro* synthesis mRNA encoding either C/EBPβ or C/EBPδ for 24 h and harvested for gene expression analysis. The values presented are the average relative expression levels from technical replicates of the matching RNA samples from the western blot experiment presented in Figs. 5A-B. **Figure S9. BRD4, but not BRD2, BRD3 or C/EBPβ, is immunoprecipitated with JMJD6 regardless of JQ1 treatment.** Endogenous JMJD6 proteins in day1 postinduced C3H10T1/2 cells with and without JQ1 treatment were immunoprecipitated. The eluted samples were run on 8% SDS-PAGE for western blotting. The blots were probed with antibodies against JMJD6 (sc-28349), mouse IgG (NA9310), BRD4 (A301-985A50), C/EBPβ (sc-150), BRD2 (A302-583A), and BRD3 (A302-367A).

Figure S10. Ectopically expression of JMJD6 protein in C3H10T1/2 cells.

(A) Scheme of the full-length wild type, catalytic-inactive and truncated JMJD6 mutants. The DNA sequences encoding the truncated proteins were PCR amplified and cloned into a pBABE vector as the same as for the wild type and catalytic-inactive JMJD6 mutant. (B) A representative western blot for the expression of JMJD6 proteins in C3H10T1/2 cells. The blot was probed with a serum recognizing FLAG sequence and re-probed with an antibody for β -ACTIN as a loading control.

Table S1. The oligonucleotides for plasmid construction

Table S2. The primers for gene expression analysis

Table S3. The primers for ChIP assay