Longitudinal Functional Data Analysis Stat

Supplementary Material for:
Longitudinal Functional Data Analysis

SY Park and AM Staicu

Department of Statistics, North Carolina State University
July 18, 2015

Section S1 summarizes the proposed estimation method in steps and provides a list available softwares for
implementation. Section S2 provides detailed proofs of the theoretical results given in Section 4. Specifically Section
S2.1 corresponds to Section 4.1 and includes proofs of the theoretical results for the case when Yj;(s) = Xj;(s).
Whereas Section S2.2 corresponds to Section 4.2 and includes proofs for the case when Yji(s) = Xj;(s) + €1,i;(s).
Section S3 includes additional simulation results for the case when data are corrupted only with white noise error,
and results obtained using Chen & Miiller (2012)'s method. Section S4 includes additional figures for the DTI data
analysis.

R code implementing the simulation study is available at http://www4.stat.ncsu.edu/ staicu/software/MLFD_
Sims_Rcode.zip. An illustration of the main ideas is available at http://www4.stat .ncsu.edu/ staicu/software/
MLFD_Rcode.zip

S1. Implementation using available softwares

An important advantage of the proposed approach is that its implementation can be carried using available software.

Step 1. Estimate the smooth mean function fi(s, T') using the sandwich smoother (Xiao et al., 2013) (the £bps function
in R (R Core Team, 2014) package refund (Ciprian Crainiceanu et al., 2014)) or using the penalized tensor
product spline smoothing (the gam and te functions in R (R Core Team, 2014) package mgcv (Wood, 2011)).

Step 2. Estimate the smooth covariance function =(s, s’) with the demeaned data (dense design) using the sandwich
smoother (Xiao et al.,, 2015) and get the eigenfunctions ¢x(s) using the fpca.face function in the refund
package (Ciprian Crainiceanu et al., 2014). The default option of this function also provides & jjk's.

Step 3. For each k, carry out FPCA of {7}, gW,’jk . 1,j}. There are several available options for implementation: fpca.sc
function in the refund package (Ciprian Crainiceanu et al., 2014) and fpca.mle and fpca.pred functions
in the FPCA package (Peng & Paul, 2009; James et al., 2000) in R. Alternatively one can use the FPCA
function (Yao et al.,, 2005) in the MATLAB (MATLAB, 2014) package PACE (Yao et al.,, 2005) available at
http://www.stat.ucdavis.edu/PACE/.

Step 4. Determine the predicted trajectories, Yi(s, T) = fi(s, T) + S S Cirrian(Tdi(s). .
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S2. Proofs of theoretical results given in Section 4

S2.1. Case when response curves are measured without error (Section 4.1)

Here we consider the case when Yj;(s) = Xjj(s); thus in this section, Y(s, T) satisfies all of the assumptions made on
X (s, T). We first show the following corollaries:

Corollary 4.0.1
Under the assumptions (A1.) and (A2.), the marginal covariance function, ¥(s,s’) = [ c¢{(s. T),(s".T)}g(T)dT, (i)
is symmetric, (ii) is positive definite, and (iii) has eigenvalues satisfying that y v ; Ak Is finite.

Proof. We assume that X;(s, T) is a realization of a random process, X, that satisfies the assumption (Al.). By
definition, the covariance operator of X is C(y) = E[< X,y > X], y € L?(S x T), and it follows that

Cy)(s. T) = / / (5. ). (5. TYy(s, T)ds'dT",

where ¢((s,T), (s, T")) = E[X(s, T)X(s',T")]. Since the operator, C, is a properly defined covariance
operator, it (i) is symmetric, ie. c((s,T),(s"T")=c((s,T"),(s,T)), (ii) is positive definite, i.e.
[ c((s,T), (s, T"))y(s, T)y(s', T )dsds'dTdT’, and (iii) has the sum of its eigenvalues being finite,
ie. [[c((s,T), (s T))dsdT < oo (Horvath & Kokoszka, 2012). In the following, we show that X(s,s’) =
Jc{(s,T), (s, T)}g(T)dT has the same properties as c((s, T),(s’, T')) has, and thus is also a proper covariance
function.

(i) (s, ") is symmetric.

(s, s") :/c{(s,T),(s’,T)}g(T)dT:/E{X,-(s,T)X,-(s’,T)}g(T)dT (S1)

- / E(X(s', T)Xi(s, T)}g(T)dT = / c{(s'. T). (5. T)}g(T)dT = (s, s)
(ii) X(s,s') is positive definite.

To show 3 (s, s') is positive definite we need to prove the following holds:

// Y (s,5)z(s)z(s')dsds' = // [/c{(s,T),(5’,T)}g(T)dT}Z(s)Z(s’)dsds’
FobiaLe T / 9(T)| / / c{(s.T).(s'. T)}2(s)2(s')dsds' | dT = 0.

And because a density function, g(T), is non-negative by definition, it is sufficient to show that
[ c{(s.T), (s, T)}z(s)z(s")dsds’ > 0 for any z(-) € L?([0, 1]) and it is equivalent to show that X (s, T*) for arbitrary
fixed T* € T is square integrable.

We prove this by contradiction. Let Z(T) = [ X?(s, T)ds. Assume that E[Z(T)] = oo for T € To C T such that
J7 9(T)dT > 0. It follows that [, Z(T)dT > [, Z(T)dT, because To is a subset of 7. As expectation is a
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linear operator, E [ Z(T)dT > E [. Z(T)dT still holds. It implies that E [ Z(T)dT is infinite as we assume that
E[Z(T)] = oo for T € To. However because X (s, T) is square integrable and E{ [- Z(T)dT} = E{[[ X?(s, T)dsdT},
E{J-Z(T)dT} is finite. Thus by contradiction, we show that £[Z(T)] is finite and X(s, T*) is square integrable for
fixed T* € T. And it follows that X(s,s’) is positive definite.

(iii) Eigenvalues of ¥(s,s) satisfy >_;°; A < oo, which is equivalent to [ (s, s)ds < co.

Because c((s,T),(s’, T')) is a continuous function in & x 7 and the intervals, S and 7T, are compact,
J[c((s.T), (s, T))dsdT is finite. Hence under the assumptions (Al.) and (A2.),

/Z(s,s)ds :// c((s,T), (s, T))g(T)dTds
Fubini’s T“/g(T)[/c((s,T),(s,T))ds} dT
< [swprer oM [ c((s. 7). (5 T)ds]dT = suprer o() [[ ct(s. 7). (5. T)dsaT <,

and equivalently, the sum of eigenvalues of ¥ (s, s’) is finite.

Thus we obtain that X(s,s") = [ c¢((s, T),(s', T)g(T)dT is a proper covariance function. The reason why we refer
Y (s,s') as the marginal covariance function of X;(s, T) is as follows. Assume that there is a true latent process, U;(+),
such that X;(-, Tj;) is Ui(-) given that T = T;;. Then the marginal covariance function, ¥(s,s’), is the covariance
function of the true latent process, U;(s); specifically,

cov{Ui(s), Ui(s")}
= Er[cov{U;(s), Ui(s")|T = Tj;}] + covr [E{Ui(s)|T = T;;}, E{Ui(s)|T = T;;}]
= Er[cov{Xi(s, Ty), Xi(s'. Tij)}] 4+ covr[E{Xi(s, Tiy) }, E{Xi(s". Tjj)},

where the first term is

Erfeov{Yi(s, Ty). Yi(s'. T))}] = / (5. 7). (8. T}a(T)dT

=3 (s,9¢),

and the second term is equal to O.

Let {Ty:d =1, ..., D} be a set of unique Tj;'s for all i and j in an increasing order, such that T; < T, < ..., < Tp
and assume To =0 and Tp = 1.

Corollary 4.0.2

~

Y (s,s') is an unbiased estimator of the marginal covariance function, (s, s’).

Proof. Here we show that that the sample covariance, f(s, =", ijzl Yii(s)Y;i(s")/(32L, mi), is an unbiased
estimator of ¥(s, '), i.e. E{E(s,s')} = £(s, ). Recall that here we are assuming Yij(s) = Xjj(s). The proof is as
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follows:

—3 e

’1 Ii=1 j=1

st S S Iy € (Taa, T}
i 4=

=1 j=1
—Zlm,Z

E{S(s,s)} = E{

ZZE{Y’J(S)YU(S (T € (Ty-1, Td])}
d=1 i=1 j=1
ST m; ;;;E{Y(S Ta)Yi(s', Td)} {/(Tij € (Ta-1, Td])} (because TILY(-, T =t))
ZZc( $.Ta). (8. T))P(T € (Tu—r, Tal)  (because Yi(s, Ta) = Xi(s, Ta))
s d 1i=1j=1
=Y (s Ta) (8. T))P(T € (T2, To]) = /c((s, t), (s t))dF(t) = £(s, ),

d=1

where F is a true sampling distribution function of T.

Theorem 4.1.1 (Theorem 1 in Section 4.1)
Assume (A1.) - (A3.) hold. Then |~(s,s'") — X(s,s')| =+ 0 as n diverges. If in addition (A4.) holds, then

IZC, ) = (. )lls 2 0 as n — o0, (52)
where || k(-,)||s = {[[ k*(s, s')dsds'}*/? is the Hilbert-Schmidt norm of k(- ).
Proof. We prove this theorem in two steps: first we show (i) the pointwise consistency and then we show (ii) the

Hilbert-Schmidt norm consistency.

(i) The pointwise consistency

Let My=Y",m, My=3 " L m?, and Py = P(T € (Ty-1,T4)). Let Ai(T) be a realization of A(T)=
Y(s, T)Y(s', T) for fixed s and s', and let Viy = (D/My) 3 1L, 357 Ai(Ta)!(Tij € (Ta—1, Tal). Then the estimator,

5 (s,s'), can be written as V = D120 v

S(s.8) = Z ZY,,(s)YU(s )
1 =1 j=1
1 D
=525 Z 5 S WS TS Ta)I(Ty € (Tas, Tl
d=1 m; i=1 j=1
1~ D ™ 1D
=520 A(TITy € (To-1. Tal) = 5 D Ve
d=1 1 =1 j=1 prae
4 Stat 2012, 00 1-34
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Notice that Vy's are correlated over d. To show the consistency of the average of the correlated random variables, we
first obtain the covariance of Vy and Vi, cov(Vy, Vi) = E[VaVar] — E[V4]E[Ve] and then use Theorem 5.3 of Boos &
Stefanski (2013, p.208). For completeness the theorem we used is given below:

Theorem 5.3 (Boos & Stefanski, 2013, p.208) If X1, ..., X,, are random variable with finite means u; = E(X;), variance
E(X; — ui)? = 02, and covariances E(X; — u;)(X; — ;) = o0j; such that

_ 1 n ) n—1 n
var(X) = ?[Zoei —&—22.2 er} —0asn— oo,
i=1 i=1 j=i+1
then X — i 2+ 0 as n — oo, where i = n"* 3.1 u;

In the following we obtain cov(Vy, Vi) by getting E[V,] and E[V,Va]:

EVa) = E| - D0 Y Vs, TV T (T, € (Taa, o)

=1 j=1

=D -E[Yi(s, Ta)Yi(s', Ta)] -E[I(Tyj € (Tg-1,T4])]  (because TAY (- T =t))
=D -c((s, Ty), (s, Ty)) - Py (because Yi(s, T) = X;(s, T))

D n m D n mj
EVaVa] = E {Vl DD AT)ITy € (Toa, Td])}{ﬁl DY AT (Tiy € (Tora, Td’])}
=1 j=1 =1 =1
D2 n m n m?
= (V> E[ZZZZA‘(D)/(TU € (Ta—1, Ta)Ar (Ta ) (Tiy € (Ta—1. Ta])
1 i1 j=1 i'=1 =1
D \2 n n m mj
= (V) E [Z SOSTS T ATDA(T) Ty € (Tamr, TaDI(Tip € (Tar, Tal)
! i=1 =1 j=1 j=1
D2
= (Vl) SN EAT)A(T )Ty € (Tams, TaDI(Tiy € (Tor—1, Tal)
Y
D2
= (Vl) SN EAT)A(T) [E| 1Ty € (Tomt, Ta)I(Tiy € (Ta—1, Tal) (S3)
Y
Here we consider Equation (S3) for two cases; when d = d’ and when d # d'.
S G g G
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Case1l: d =d'

This is equivalent to say that Ty =Ty as{T4y:d=1,..., D} is a set of unique values. Let T* =Ty = Ty

E /(TU c (Tdfl, Td])/(T,'/J'/ S (Td/,l, Td/]):| = P(TU S (Tdfl, Td] and T,‘/J'/ € (Tdfl, Td])

P(Tij € (Tg—1, Ta)P(Tij € (Ty=1, T4]) = Pg for i1 j.J
=\ PTy € (Ta-1,Ta]) = Pa fori=1i,j=/

0 fori=1ij#]

E[AT) A (Ta)| = E[Yils, TOYi('. Ta)Yis, Ta)¥i(s'. Tar)]
= E[Yi(s. T, TWals, TIYi(s', T
E[Yils, TWils', T E[¥ols, T)¥ils', )]
=c((s,T*), (s, T%))? for i #1',j,J
(because Yi(s, Tq) = Xi(s, Tq))

e[{vis. Tt T} ]

2
- var{v(s, TY(s, T*)} + {c((s, ), (s, T*))} fori=1j,J
(because Yi(s, Tq) = Xi(s, Tq4))

By summing over all i, /,j, and j/, Equation (S3) for the case of d = d’ equals to

E[VaVa] :<M£1)2 {z”: mi(My — mi)}{'Dd (s, T7). (8, T*))}Q
i—1
4 (/\%)2 My - Py~ |var{¥ (s, T (. T} + {e((. 7). (5. 7D}
= (0>~ ’V;\?ﬂ?z) [Py cl(s. 7). (. TD}
+ (/\Dﬂj) Py var{Y(s, TY (s, T*)} + {c((s, T, (s, T*))}2 ford=d'
Copyright © 2012 John Wiley & Sons, Ltd. 6 Stat 2012, 00 1-34
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Case 2: d # d’

E[/(T,,- € (Tuer, T)I(Toy € (Tarr, Td/])} = P(T}j € (Ty-1, Ta] and Ty € (Ty—1, Ta])

P(Tyj € (Tag—1, Ta) P(Tirj € (Tar—1. Tar]) = PaPar fori # 1, j,J

= P(T,J S (Tdfl, Td] and T,'J'/ € (Td/,l, Td/]) = P,Py for i = I'/,_j' 75_// (becauseﬂjj_ﬂj/)

0 fori=i"andj=/

For the last case (i =" and j = j'), P(Tj; € (Tg—1, Tq] and Tyj € (Tg—1, Tr]) is equal to O because it is not possible
that one subject is observed at two different visit times, Ty and Ty, with the same index for visit, j = /.

E[A(T) A (To)| = E[Yils, ToVi(S'. Ta)Yils, To)¥i(s'. Ta)]

E|Yils, ToYi(s', Ta) | E|Yo(s. Ta)Yils' T

= c((s.Ta) (s Ta)) - e, Ta) (s, ) For i 1, J.]
(because Yi(s, Tq) = Xi(s, Tq))

E[Vi(s. Ta)Vi(s' To¥ils. To)i(s'. Ta)|  fori=i'j#/

0  fori=1ij=]
By summing over /, i’, j, and j/, Equation (S3) for the case of d # d’ equals to
(D2 / /
E[VaVa] —(ﬁl) {,z; m;i(My — mi)}{Pd “Par-c((s,Ta), (s, Tq)) - c((s, Tar), (5, Td/)}

+ (/%)2 {im/(m, - 1)}{Pd Py - E[»/,(s, Ta)Yi(s', Tq)Yi(s, Ta)Yi(s', Td,)}}
i=1

=(p?- M&?z) {Ps- Pa c((5.T0). (5. T9) - €((5. Ta). (5. Tar) }
(M2~ o) (R P EPU T (S T T8 T} for d £

In summary, we have

EVa] =D - c((s, Ty), (s, Tg)) - Py (because Yi(s, T) = Xi(s, T))

Stat 2012, 00 1-34 7 Copyright © 2012 John Wiley & Sons, Ltd.
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and

{02 2O (s o) (5. T}

v
AP P B TN TV TN )]} ford =t
E[V,Vy] =
{p>- M&f M PP (5. T). (s T)) - cl(s, Ta). (5. T}
M — o H PR E Y TV T Ta V(5. To)] ) ford £

Finally we obtain the covariance of V; and Vj; that is,

cov(Vy, Vi) = E[VgVa] — E[V4]E[Vi]
D2

{M}{Pd . E[Y,‘(S, Ta)Yi(s', Ta)Yi(s, Ta)Yi(s, Td’)} }
- {M/\Z?Q}{Pd'C((S.Td)y(s',Td))}2 for d = d’
{M&?z - ADZ}{Pde/ : E[Y,-(s,Td)Y,(s’,Td)Y,-(s,Td,)Y,(g’,Td,)]}
_ {/\/224?2}{%% (5. Ta), (8. Ta)) - c((s. Tar), (s/,Td,))} for d £ d’

For simplicity in notation, denote the variance of V4 with 03, and the covariance of V,; and Vi with 04 . Under the
assumptions (Al.) - (A3.), E[V4], 07 and o4« are finite. Following Theorem 5.3 of Boos & Stefanski (2013, p.208),
we show the pointwise consistency of (s, s') = V by proving that the following holds;

1 D D—-1 D 1 D D
7[20’34—22 Z O'dd/:|=72[ZU§+ZZUdd/:|L>O as D — oo.
D d=1 d=1 d'=d+1 D d=1 d=1d'#d

. . ) 1
By plugging in cov(Vy, Vi) that we obtained earlier, we get the first term, 2 25:1 0(2,, equal to

i P Es T Topvits, Todits' T} - {D:JA? WPy c((s.Ta). (5. Ta) Y

= /\//i1 ED: {Pd . E[Y,-(s, THYi(s', THYi(s, Ta)Yi(s, Td/)”
d=1

My & 2
_ WZ{PC,-C((S, Ta). (s, Ta))}

1 g=1

— | ErEAMAITY (54

M2 D / 2
_ [l\//f ; {Py-c((s.Ta). (s". Ta)) }

Copyright (© 2012 John Wiley & Sons, Ltd. 8 Stat 2012, 00 1-34
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1
and the second term, 2 ZdD:l > a4 Odar, equal to

{ My D2 D?

~ i H{PaPar - E[Yils. TS, To)¥i(s TaI(s'. T }

535

_ { M/\g/éﬂ }{Pde/ ~c((s, Tq), (5" Ta)) - c((s, Ta), (5. Td’))}

{/\//2/32 D2

My My - HPaPo - E|Yils ToVi(s', TYils. Ta)Vi(s . To)| |

(S5)

S W PP (5. T0). (5. Ta) - (5. T, (5. To) } | (S6)

where

D
Term (S5) = {7 - 7} S5 PP E[Y,(s, Ta)Yi(s' Ta)Yi(s, Ta)Yi(s', Td,)}
d=1

d
(4 ) [ bt oo

d'=1

= P[5, TOW(s'. Ta)Yils. Ta)V(s', Tar)

_ [{Mz B 7}2% Er[EIAAT)IT = To. T = Tal]

My 17L&
- [{Mz - M} dg PIEA(T)?|T = Td]

_ [{Mf - MLI}ET[ET/[E[A(T)A(T’)IT, 1]

—l{—}ZPd E[A(T)?|T = T4l

and

Term (S6) = ——5 PaPa - c((s,Ta), (', Ta)) - c((s, Ta), (5", Tar))
v Z Z ! !

2 ZlDd c((s, Ta). (s". Ta)) Z Pa - c((s, Ta), (', Tar))

1 g=1 d'#d

Stat 2012, 00 1-34 9 Copyright © 2012 John Wiley & Sons, Ltd.
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ZPd c((s. Ta). (. Ta))

1d1

D
> Pacl(s.Ta). (s Ta)) = Pa- c((s. Ta). (s Ta))
d=1

= MQ{Z(S s)}2+ Z{Pd c((s, Ta). (s, Td))}

1d1

By combining everything together, we have

D

D
%[ZUE/‘F Zadd’} :[A;ET[E[A(TYT]]

d=1 d=1d'#d !
{f - i}ZPd EIA(T)AIT = T4]

As discussed before, to prove the pointwise consistency of f(s, s’ it is sufficient to show that Equation (S7) converges
to 0 as D diverges; we show this by showing each of the terms in Equation (S7) converges to zero as D diverges.

{3 37 JEMEREAMATIT. T)

- A“jjz{Z(s,s'»? (s7)

First notice that My diverges with D because D < M; and M;/M, = O(1). And recall that here we are considering
the case when Y(s,T) = X(s,T), and thus Y (s, T) satisfies all of the assumptions made on X(s, T). Because
integration of a continuous function in a compact interval is finite, under the assumptions (A2.) and (A3.) it is easy
to show that E7[E[A(T)?|T]], ET[E[E[A(T)A(T))|T,T']]], and ¥(s,s’) are finite. For example E[E[A(T)?|T]] =
J7 9(ME[A(T)?|T]dT < suprg(T) [ E[A(T)?|T]dT is finite because (i) by the assumption (A2.) suprg(T) is finite
and (i) [-E[A(T)?|T]dT is finite because by the assumption (A3.) E[A(T)?|T] is continuous and finite in the
compact interval 7 = [0, 1]. And with the same reasoning we can also show that 25:1 P2 - E[A(T)?|T = T4] is finite
because S5, P2 E[A(T)2|T = T4 < supyPsET[E[A(T)?|T]]. Thus we show that each of the terms in Equation
(S7) converges to zero as D diverges.

It follows that

D D
1
§{205+Z add/}QOasD—M)o,
d=1 d=1d'#d
and by Theorem 5.3 (Boos & Stefanski, 2013), £(s,s')=V = D! Z? 1 Vg converges in probability to
D1 25:1 E[V4] = 25:1 Pg-c((s,Tg), (s, Ty)) = (s, 5') as n diverges; recall that we assume D diverges with the

sample size n.

(i) The Hilbert-Schmidt norm consistency

Because the Hilbert-Schmidt norm consistency is implied by the convergence of E{Hf(s,s’) —Z(s,s’)”ﬂ using

Markov inequality, it is sufficient to show that E{Hf(s,s’) — E[i(s,s’)]”i] = E{Hf(s,s’) —X(s, 5’)Hﬂ converges
to 0 as n diverges and we prove it by showing that the upper bound given in Equation (S10) converges to 0 as n
diverges.
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The sample covariance operator associated with f(s, s') is

IZ ZZ<YIJ X>YIJ/(TU G(Td 1, Td])

/1] 1
D
=D~ 1ZM122<Y( Ta). x> Yi(-, T)I(Ty € (Ty_1, T4l), xel?
=1 j=1

and using the covariance operator, H(-), E[Hf(s s — E[f(s, s’)]Hﬂ can be written as
E[|S(s.s") — (s, )1[12] = || — EH|2] = E[Z IH(e,) — ETH(e]]2]

ZHD 12 ZZ{ < Vgoer > Yyl(Ty € (Tomn, Tal)

/1]1

—E[< Y e >Yil(Tij € (Ty-1, Td])]}Hj :

where {e, : v > 1} is any orthonormal basis (Horvath & Kokoszka, 2012, p.22).
Let Rudv =< YU ey > Y,J/(T,J S (Td 1, Td]) ( Td) e, > Y,(, Td)/(T,_, S (Td—lx Td]) Then it follows that

E[IS(s.s) — E5(s.)[12] = E[||H ~ E[H]|Z]

00 D n

~e[3 o 7 25 (R - R[]

=1 j=1

[ZD2227<ZZ{RWV E[R,JdV}ZZ{R,,d/ — ElRiyanl} > |

v=1 d=1d'=

3

D D noom
R M) %) 9 3 CLIEL UL
d=1 d’:l ' P 1
D D -
= M2 > Qaa, (58)
d=1d'=1
where we define
n m; my
Qdd’ ZZZZZ E{ < Rudv - E[Rudv] R/J’d/ - E[R,J/dlv] > }
i i 1
n m; My N
- ZZZZZ {E[< Rijav, Rijarv >]1— < E[Rijav]. E[Rijarv] > } (S9)
j Jov=1

Furthermore because Qg < |Quar| and |a+ b| < |a| + |b| for any a, b € R,

D D D D
0 < E||H—EH[Z] = M2 DY Qoo < M2 3" D IQual

d=1d'=1 d=1d'=1

Stat 2012, 00 1-34 11 Copyright © 2012 John Wiley & Sons, Ltd.
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n n m Mg oo

ZZZZZ {E[< R’JdV i'j'd'v >] < E[Rudv] E[RIJ d’v] > }

M:zi:i

1d'=1 i i’ i J v=1
D D n n m My oo
<M Z Z ZZZZZ {E[< Rudv i'j'd'v ]— < E[R,‘jdv], E[R,‘/_/'/d/v] > }’ (S].O)
d=1d'=1 | i’ i v=1

As discussed, we show the convergence of E[Hf(s,s’) — E[f(s,s’)]”ﬂ =M 2 S0 Qe by showing that

the upper bound given in Equation (S10) converges to 0. In the following we first simplify the summand in Equation
(S10) and then study the sum.

Let Gig(x) =< Yi(-, Tq), x > Yi(-, Tq) for x € Lo. Notice that the summand in Equation (S9), E[< Rjjgv, Rijarv >
|- < E[Rjjav]. E[Rijav] >], can be rewritten as
E[< Rijav, Rijav >1— < E[Rjjav], E[Rijiarv] >]
= E[I(Ty € (To1. Tal) - I(Tiy € (Tor-1. Tal)| X E[(Gia(er). Gra(e))]
—E[I(Ty € (Tas. TaD)] - E[1(Tiy € (Ta1. Ta))] x (E[Gia(e)]. E[Gralen)]). (S11)

because of the following:

E[< Rijgv. Rijrary >]
=E|{<Yi(-.Ta). e, > Yi(-, T))[(Tyj € (Ta—1. Tal), < Y-, Ta), & > Yo (. To (T € (Tar—1, Td/]))}
- E /(7_’1 E (Tdfl, Td]) . /(7_”JI E (Td/,l, Td/])

X (<Y To) e > Vi, To). < Vil Ta) e > Yol Tg)) |

= E[I(Ty € Ty, Ta) - 1(Tiy € (Ta-1. Ta))]
x E[( <Y Ta) ey > Y. Ta) < Yo Ta)r ey > Vil TQ)}]
and
<E[Rijav], E[Rijrarv] >
- <E[ <Y To) e > Y THI(T, = Td)] E[ <Y Ta)ew > Y Ta)(Top € (Tas, le])]>
= (E[ <Y (.To). e > V(. To)| -E[1(Ty € (T-1. TaD).
E[ <Y(.Ta) e >Y(, Td/)] : E[/(T,-,J-, € (Tar, Td/])]>
= E[/(T,-j € (Tut, Td])} : E[/(T,-,ﬂ € (Ty_1, Td/])]

X <E[ <Y(.Ta) e, > Y( Td)}, E[ <Y Ta) e > Y(, Td’)”>

In the following we consider Equation (S10) for two cases, when d = d’ and when d # d'.

Copyright (©) 2012 John Wiley & Sons, Ltd. 12 Stat 2012, 00 1-34
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Case 1: d = d'

This case is equivalent to the case of Ty = T4 as Ty4's are unique values. Let T* = T4 = T4 . First observe the
following:

P2 for i # i',j.J
E[/(TU € (Ta-1. Tal) - I(Tiy € (Tar-1, Td’])] =40 fori=1,j#/
Py fori=1,j=]
E[I(Ty € (To-1. TaD)| - E[I(Tiy € (Ty1, Tal)| = P for all i, ,j.J
Case 1(a): d=d',i #i,j,j (Using independence)
E[< Rijav. Rijarv >]— < E[Rijav], E[Rijav] > from Equation (S11)

E_<G/d(ev) Gi’d’(ev»} - <E{Gid(ev)}r E{Gﬂd'(ev)b}

- LE[(Gate). Gra(e))] — (E[Giaten)]. E[G,-,d(e»D}

=Fj- {E' [ Guten(s)- Graten(s) ds] - (E[Guate)], E[G,-fd(e»b}

E[ <Y Ta) e > Yi(s, Ta) < Vil To), & > Yi(s, Td)c/s} - <E[G/d(ev)], E[G,-,d(ev)b

E <Y Ta) e > Yi(s. Ta) < Yi(-. Ta)r ey > Yi(s, Td)} ds — <E[G,-d(ev)], E[G,-,d(e\,)b}
(by commutative property of expectation with bounded operators (Horvath & Kokoszka, 2012, p.23))

=P3. {/E[ <Y Ta). ey > Yils, TO)[E[ < Y- To). e, > Yi(s. o) | ds

- (eloute]. efonten)])]

(by independence)
=P} {<E[G,-d(ev>}, E|Grae))]) = (E[Giale)]. E[G,-fd<ev>]>} =0

Case I(b): d=d" . i=i"Jj#/

E[< Rijdv: Ri’j’d’v >]_ < E[Rjjdv], E[Ri’j’d’v] >

Stat 2012, 00 1-34 13 Copyright © 2012 John Wiley & Sons, Ltd.
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=0- E[<G,d(ev), G,'/d/(ev)ﬂ - P <E[Gid(ev)]y E[Gi’d’(ev)]>

— P2 <E{Gid(ev)}' E{G,‘d(ev)p
— _pP2. HE[G[d(ev)] ‘2

2
= —P;-[E[< Y. o) e > V(. T0))]|
2
Because P7 and HE[ <Y(.Ta) e >Y(., Tq))] H are nonnegative, it is implied that

2
[El< Riav. Ry >1- < ElRyal. ElRipan] > | = P2 [E[ < V(. To) e > Y. T)]|
2
<P E[l <Y Ta) e > YT
(by Jensen’s inequality; || - || is a convex fucntion)

=P E[l <Y (. To)e > - Y T[]

It follows that Equation (S10) for the case of d = d',i # /', j,j is equal to

w2 Y Yy

{E[< Rijdv, Rijarv >1— < E[Rjjav], E[Rijav] > }|

d,d'=di,i'=ijj'#j v=1

M2 Y Y Y R e[ <Y T > PG )]
d,d'=di,i'=ijj'#j v=1

=2 > S S PV T Y < Y Ta) e > P
d,d'=d i,i'=ij.j'#j B v=1

=2 > ST S PEE[IVC TP IVC T ] by Parseval's identity
d,d'=d i,i'=ijj'#j B

= M2 Y 3 R E| YTl

d.d'=d ii'=ijj'#i
My — M
= M2 IZPd “Y( Td)”}

(/\/72 - /\//1) supgFa E

[l ¢ Tl

Case 1(c): d=d",i=1i,j=/

El< Rijav, Rijarv >]1— < E[Rijav]. E[Rijav] >
=Py - E{<Gid(€v), Gi’d’(ev)>} - F7- <E[Gid(ev)}: E{Gﬂd/(ev)b
=Py~ E[<G/d(ev), G/d(ev)>] - P3- <E{Gid(ev)}x E{Gid(ev)}>

Copyright (© 2012 John Wiley & Sons, Ltd. 14 Stat 2012, 00 1-34
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= Py E[|Giate)I] - P5-|[E] G,d(ev)]H2

<Py [ <Y Ta) e > V(. To)]

(because P? and HE[G,d(e‘,)] H are nonnegative)

=Py B[l <Y(.To). e, > P Y. TP,
Furthermore in this case,
E[< Rijav. Rijarv >]— < E[Rjjav], E[Rijarv] >= E[< Rijav. Rijav >]— < E[Rijav]. E[Rijav] >
= E[”Rijdv”ﬂ - HE[RUdv]H2 = E[HRUdv - E[Rijdv]HZ} >0

Thus it follows that Equation (S10) for the case of d = d’,i = i',j =/ is equal to

uEY Y Y

{E[< Rijdv, Rirjarv >1— < E[Rjjav], E[Rijarv] > }

d,d'=dii'=ijj/=jv=1
0
= /\/l]._2 Z Z Z Z {E[< Rijdv: Ri’j’d’\/ >]_ < E[R[jdv], E[Ri’j’d’v] > }
d,d=dii'=ijj'=jv=1

(because it is shown that the summand in this case is always nonnegative)

M2 Y S Y S AE[<YC T e > B VT

d.d'=di,i'=ijj=jv=1
=M 0 3 PaE[IVC T YN < Y T e > P
d,d'=dii'=ijj'=j v=1
=M YN Py E{HY(., Td)‘ﬂ (by Parseval’s identity)
d,d'=dii'=ijj'=j
1
T E[llv (. 7 *] = 5 Er|E[IVC. T
d=1
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Case 2: d # d’

First observe the following:

PPy for i # 1", j, '
E[/(T,j € (Taor, Tal) - I(Try € (Tar-1, Td,])} ={ PPy fori=1"j# )

0 fori=1,j=]
E[/(T/j € (Ty-1, Td])} : E{/(Ti’j’ € (Tg-1, Td’])} = P4P forall i, /", j,J'

Case 2(a): d #d',i # 1, j,j (Using independence)

E[< Rijav. Riyaw >)= < E[Rya), E[Riyan] >

= PP - {E[<Gid(ev)y Gi’d’(ev)>:| - <E[G/d(€v)}, E{G/’d/(ev)b}

(by the same reasoning that we use for Case 1(a))

= PyPy - {<E[G,-d<ev>}, E[Gra(e,)]) = (E[Guale)], E[G,vd/<ev>}>}

=0

Case 2(b). d £ d',i=1,j#]

E[< RUdV' Ri’j’d’v >]_ < E[Rijdv]r E[Ri’j’d’v] >
- oy {efGoten 6ote] - (eute). eote)) o
Here we consider lower and upper bounds for each term in Equation (S12). By Cauchy-Schwartz inequality,

LS, < PaPy - E[<Gid(ev)y Gid’(ev)>:| <U}, (S13)

where USH) = PyPy - E{|| <Y T e >YETH| | <YCTa) e > Y Ta)
Cauchy-Schwartz inequality, the second term in Equation (S12) is bounded below and above:

| and L8, =~y Similariy, by

LG), < PaPa - <E|:Gfd(ev):|v E[Gid’(ev)]> <Ug), (S14)
where US), = PaPo - ||E[ < Y (. Ta). e > Y (. To)] || - [E[ < V(. To) e > V(. To)] | ana L), = U,

Copyright (© 2012 John Wiley & Sons, Ltd. 16 Stat 2012, 00 1-34
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It follows that, for the case of d £ d',i =1, #/,

Lagv < PaPy - {ERGid(ev)v Gid/(ev)>} - <E{Gid(ev)] E{G/d/(ev)b} < Udarv,

where

Ugary = U((jld)/ - L(d2d)’ Ug?/v + U((ﬁll)’v’ and

(1 1 2
Lagy = de)v — Uddv = _Ugd)’v - Uc(fd)’v = —Uqarv.

As the lower and upper bounds has the same magnitude, i.e. Uggry = |Lqgary|, it follows that ‘E[< Rijav, Rijary >]— <
ElRyav]. ElRijav] > | < Ugar.

Furthermore using the fact that (a® 4+ b)/2 > ab for any a,b € R,

> Ul =3 PoPa -E[||Gis(e)]| - [|Gia ()]
v=1 v=1

o

Pde,- {|| <Y Ta) e > Vi T - | < Vit Twr). ev > i, Tar)

)

Z PoPo - E[|| <% To). e > Vi, Tl + | < Vi Ta) & > Vi, T ]

<

[y

N

= ZPde/ : { Elll < it Ta). e > Vi To)|IP] + E[| < % Ta). e > Yi( To)
v=1

2}}
= %Pde' : { E{HY(-, Td)H4] + E[HY(': Td’)Hﬂ} (S15)

(by Parseval’s identity)

S0, =3 pobe-[elcate]| - [efcioten]

1 2 2
<3 Pde/-{H <Y,-(-,Td),ev>Y,-(-,Td)]H +H E[<Y,-,(-,Td,),ev>y,-,(.,Td,)]H }

d }
(by Jensen’s inequality; || - || is a convex function))

4} } (S16)

s

Pde/ . { |:| < Y( Td) e, > Y( Td)H } + E[H < Yi(',Td/), ey > Yi('de/)

I\)\'—‘

:;&%-{qw«nmﬂ+EMwww>

(by Parseval's identity)
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Then Equation (S10) for the case of d # d',i=1i',j # ' is equal to

Py YYY

d.d'#£d i,i'=ijj'#j v=1

< M;? Z ZZZUddw:M{Q Z ZZZ{U&?V+U§2€}V}

d,d'#d ii'=i jj'#j v=1 d,d'£d i,i=i jj'#j v=1
<M2 3 Y S Py { ElvC.Tol*] + E[||Y(-,Td,)}4}}
ML S e vl S ne vl
d,d'#d d,d'#d

d,d'#d i,i'=ijj'#j
My — My ¢ 4
= 2 S R E[IYVE Tl Y P
1 d=1

{E[< Rijdv, Rijarv >1— < E[Rjjav], E[Rijrar] > }|

Z
Mt S R (S IV Tl - v Tl ])
Mt el Tl - et S e el ol
" Mszml er|E[Ive Tl | - Mlele _dépg. e[l ¢ 7]
< 202 e eyl

Case 2(c):d#di=1i.j=]

E[< Rijav. Rijarv >]— < E[Rijav]. E[Rijav] >
= 0-E[(Gu(e). Gia(e))| = PaPo - (E[Gia(e)]. E[Gia(e))])
= ~PyPy - (E[Giale,)]. E[Giae)])
and it follows that

E[< Rijav: Rijav >1— < E[Rjjav], E[Rijav] > ‘ = PyPy -

(E[Giaten)]. E[Giuten)])] < UZ,

(by Cauchy-Schwartz inequality)

Then Equation (S10) for the case of d # d’,i =i, j = j is equal to

DI

d.d'#d ii'=ijj'=j v=1

{E[< Rijav, Rijav >1— < E[Rjjav]. E[Rijarv] > }’

Copyright (©) 2012 John Wiley & Sons, Ltd. 18 Stat 2012, 00 1-34
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<MYDY U

ddtd ii—ij = v—1
2 1 4 4
< 3 53 Leee L ellvemal ]+ elve ol

dodrd ii—=ij =]

= 5i { > PPy E[[\Y(.,Td)m + > PyPy E[Hy(,de/) 4}}
T did#d dFd

1

IN

EIv (. 7))

Finally by combining all cases, we have

0< E{HH E[H]|} 2ZZQdd’<M ZZ\QM

d=1d'=1 d=1d'=
n mj my
< M12ZZZZZZZ {E[< Rijav. Rijarv >]— < E[Rijav]. E[Rijar] > }|
d=1d'= i i j v=1
(My — Mq) -supgPy 1 2(Ma— M) 1 4
<{ e e 2 L S e v T (517)

In the case of Y(s, T) = X(s, T) it is implied by the assumptions (A1.), (A2.), and (A4.) that Er [E[HY(-, Td)||4H

is finite. Thus Equation (S17) converges to 0 as n diverges. It follows the convergence of E[Hf(s, s — ¥ (s, s’)Hi]
as well as the Hilbert-Schmidt norm consistency.

Corollary 4.1.1 (Corollary 1 in Section 4.1)
Under the assumptions (A1.)-(A5.), for each k we have |[Ax — A¢| == 0, and ||px(-) — ¢k (-)||ls = 0 as n diverges.

Proof. We prove this corollary using the Hilbert-Schmidt norm consistency result obtained in Theorem 1 of Section
4.1 and Theorem 4.4 and Lemma 4.3 of Bosq (2000, p.104). For completeness the theorem we used is given below:

Theorem 4.4 and Lemma 4.3 (Bosq, 2000, p.104) Let A\; and v; be eigenvalues and eigenfunctions of the operator
C. Let \j, and vj, be the corresponding empirical eigen-elements, such that the operator Cp(Vjn) = AjnVjn. Let
Vi, =sgn < Vjn, v; > vj, j > 1.

supj>1Xjn = NI < NICp = Cll < (|G = Clls  eq. (4.43)
[Vin = Vil < alICh = Cll. ~ eq. (4.44)

where aj = 2v/2 max{(\j—1 — N)7H (N — A\j1) M ifJ > 2, and ap = 2v/2(A1 — X)L
By Theorem 4.4 of Bosq (2000, p.104),

0 < supest [k — Ml < [12(s,8) = Z(s, )l < [2(s.8") — Z(5.8)]s, and (S18)
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0 < [ldk(s) — du(s)]ls < 2V2a; M| (s, ') — 5(s, )]s, (S19)

where ax = (A1 — Xp) for k =1 and max[(Axk—1 — Ak), (Ak — Ak+1)] otherwise. Thus under the assumption (A5.) the
following consistency results are implied by the Hilbert-Schmidt norm consistency:

M — Ak == 0 and [|¢x(-) — d()lls = 0, as n — oo (S20)

Theorem 4.1.2 (Theorem 2 in Section 4.1) N
Under the assumptions (Al.) - (A6.), for each k supj|éw.ijk — Ewijk| L5 0and||Gi(-,-) — Gk(-, )ls 2 0 as n diverges.
In fact a stronger result also holds, namely supr|Gi(T, T') — Gu(T, T")| -2+ 0 as n diverges.

Proof. We prove this theorem in two steps: we first show that (i) supj|£~\/\/,,-j;< — Ewijk] 24 0 and then we use the result
to show that (ii) supT\C?k(T, T') — G (T, T')| 2 0, which implies the Hilbert-Schmidt norm consistency of @k(~, 3.
(i) The consistency ofgw,jk

For each k B
sup;léw,ijk — Ewiik| = 0, (S21)

as n diverges, because
sup e — €l = sup,| [ Vils, T)du(s)ds — [ V(s T)ou(s)ds
= sup| [ (5. T)(Bu(5) - bu()) s

< SUPJ'/

< SUP;SUPse(o,1]

Yi(s. )| [{Bu(s) = du(s)}|ds

V(s )| [ [185) - 0u(s)yas

<sup;¢|Yi(s, Ty)

X {/{@(S) — ¢k(5)}2d5}1/2 (by Cauchy-Schwartz ineq.)

= supjs

Yils, T)| % 184() = # )l (522)

where supjls‘Y,(s, 7—,‘_]‘)‘ is absolutely bounded almost surely under the assumption (A6.) and ||¢x(-) — ¢« (-)||s converges
to 0 as obtained in Corollary 1.

(ii) The consistency of G (T, T")

Recall that G(T, T') = cov(&,(T), £i(T")) is the true covariance. It is already shown in Yao et al. (2005) the uniform
consistency of its local linear estimator, denoted by Gy, «(T, ), when Gy (T, T') is obtained with Ew.ijk's; specifically,
Gw (T, T') is obtained by the local linear smoothing of {éwik(T,j, Tij) = Ewijikéw.ijk - J #J'}. And Yao et al. (2005)
showed that Gy (T, T’) is uniformly consistent to the true covariance function, G(T, T'). Here we show a similar
result when the local linear estimator is obtained with gW,jk instead of & ijk;

The sample covariance of &y jx's is as follows:

GIK(TU. Tiy) = gVV,ijkgVV,ij’k
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= {(Ewiiik — Ewiiii) + Ewiii) } % {Ewiige — Ewiigi) + Ewipuc
= Gw,i(Tir. Tip) + Ewiir — waire) Ewiie — Ewsie)
+ Ewik ik — Ewige) + Ewisk (Ewsirk — Ewipi)
By the uniform consistency of EW,Jk given in Equation (S21), the local linear estimator, Gi(T,T’), obtained by
smoothing G,k(T,J Tij), is asymptotically equwalent to the local linear estimator, GWk(T T'), obtained by smoothing

GW,k(T,J Tij#). Thus the uniform consistency of Gk(T T') is implied by the uniform consistency of GWk(T T') shown
in Yao et al. (2005). Finally the uniform consistency implies the Hilbert-Schmidt norm consistency.

Corollary 4.1.2 (Corollary 2 in Section 4.1)
Assume (Al.) - (A8.) hold for each k and I. Then the eigenvalues 7y, and eigenfunctions wk,() of Gk( )
satisfy | T — M| == 0, and [P (-) — Y (s = 0 as n diverges. Un/form convergence of Wy (+) also holds:

sup7|$k/(T) — Y (T)] £50. Furthermore, as n diverges, we have |ae'k — e,k‘ %250 and |ka/ — C,k/| %50, where
Cikt = E[Ciki|&wix] and &y ik s the mj-dimensional column vector of &y jjk’'s.

Proof. With the same reasoning that we use to show Corollary 2, we can show the consistency of the estimators of
eigen-elements from the second FPCA. By Theorem 4.4 of Bosq (2000, p.104),

0 < supps Tk = Ml < 1Gk(T, T') = Ge(T, Tl < 1Gk(T. T') = Gk(T. T")lls, and (523)

0 < [T = (Tl < 2V2bH1GR(T. T') = G(T, T')Is, (S24)

where by = (Mk1 — Mk2) for I =1 and max[(Mk,1—1 — Mk.1), (Mk.1 — Ak.1+1)] otherwise. Under the assumption (A7.), the
consistency of ||Gx(T, T") — Gx(T,T')||ls implies that the following holds:

Bk — il == 0, and [[Prs(-) — Yrs()ls == 0 (S25)

as n diverges.

Furthermore using Corollary 1, Theorems 2 and 3 of Yao et al. (2005), the consistency of the estimators of crg’k

and Z,-k, as well as the uniform consistency of ¥y,(-) can be shown with the uniform consistency result of @k(T, T
obtained in Theorem 2 of this paper. The following proofs are similar or identical to the corresponding ones given in
Yao et al. (2005).

First we show the uniform consistency of ¥ (+); the proof is the same as one given in Yao et al. (2005, p. 589). For
fixed /,

ba(T) = maba(T)| = | [ 6T T09aT)T = [ Gu(T. Ty (T aT’

< / Ge(T. T") = Gi(T. T 1B (THdT' + / IG(T. T B (T") — i(T) T

< \//(ék(r, T') = G(T, T'))2dT’ + \//(Gk(T, TY)2dT |19 — Yils,

and the consistency results of @k(T, T') and @k/(T) that we obtained previously imply that supT|'rA7k/1Zk,(T) —
NPk (T)| converges to 0 and so does sup|MeWii(T)/Mki — Wi (T)| as n diverges. By Slutsky's theorem and
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the consistency of 7, it is easy to show that supT\?)k,'(Zk,(T)/nk,—wk/(T)| is asymptotically equivalent to
supr |k (T) — Wk (T)| and thus the uniform consistency of 4, (T) holds.

Secondly the consistency of the estimator, agvk, follows from the uniform consistency of @(T, T') and that of \7k(T); it
is shown in Yao et al. (2005) that the local linear smoother, \7k(T), is a uniform consistent estimator of G, (T, T) + 02 ;..
This result is analogous to Corollary 1 of Yao et al. (2005).

Lastly by Slutsky's theorem and the consistency results of the estimators, 7y, @,k,, Y  and EW,-k, we have

ik

Cr — Cual = |ELCr ] — ElCal€waed| 2 0 (526)

as n diverges.

Theorem 4.1.3 (Theorem 3 in Section 4.1) N
Assume (A1.) - (A8.), foreach (s, T) € S x T. ThenYi(s, T) £+ 320° . 27, Cinrwr(T) b (s) asn, K and Ly’s — oo.

Proof. Let \7(5 Y= %1> 0 lc,k,wk,(T)qbk( ) be the full (not-truncated) true trajectory. And let ?K(s T)=

DI Dy IC,k,dJk/(T)(pk(s) and YKL(S T)= S Sk 1C,k,1[)k/(T)¢k(s) be the truncated versions of Y(s 7).
Because |Y(s, T) — Yi(s, 7)< Yi(s, T)— YKL(s, T)| + |YKL(5 T) - Y(s T)|, we prove the consistency of Y;(s, T)
by showing that each of |Yj(s, T) —Y*L(s, T)| and |YXL(s, T)—Yi(s, T)| converges to 0 in probability. Using
Slutsky's theorem and the consistency results obtained for the model components estimators, it is easy to show
that |Yj(s, T) — Y/XL(s, T)| converges to 0 in probability as n diverges.

In the following we show that the second term, |Y;(s, T) — YL (s, T)|, converges to 0 in probability by proving that
E[IVi(-.-) = YKL (-,)|I?] converges to 0 as K and Ly’s diverge. Because

Vi) = YFE G = 10, ) = VG + ) = YV
<2{[Yi( ) =Y COIP IV ) =Y COIRY

we prove the convergence of E[||Yi(-,-) — YL (-, )|[?] to 0 by proving that each of E[|[Yi(-,-) — Y<(-,-)|I?] and
E[IVX(-.) = Y<E(-,-)|I?] converges to 0 as K and Ly's diverge.

Let ¥, = {'zpk,(ﬂl) ..... 'sz,(T,m,)}T be the mj-dimensional column vector of the evaluations of g (:) at {T,J :
j=1,..., mi}, X¢,, be a mix m; - matrix with (j,j')th element equal to Gk(Tj;, T,J)—Hrek for j =, and

Gk(Tij, Tij) otherwise, and &, be the m; - d|menS|onaI column vector of &y jjk’s; note that these are the true
parameters corresponding to the estimators, 1[),k, Zgw , and £W/k defined in Section 3.3. Now consider the first term,

E[IVi(. ) = V< IP:

K oo

NIV = VI = [[{30 3 Gua(Ments) = X0 D Gl T)u(s) ) dsaT]

k=1 I=1 k=1 I=1

// Z ZQMI’M(T du( )}2d5dT}

k=K+1 I=1

= E Z / ZC,k,d/k, } ] (using the orthonormal property of ¢x(+))

k K+1
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= E{ > Z{Zik!}z} (using the orthonormal property of ¥(+))

k=K+1 I=1
o0 o0 5
= E[ > {ECwiléwid} }
k=K+1 I=1
= Z Zvar{E[C,-k,|£W,k]} (using the Monotone Convergence Theorem)
k=K+1 I=1
= Z an,wﬁ,zg—wlszp,k, (under Gaussian assumption)
k=K+1 I=1 ‘
= Z an, tr ["I’/klzs_vim"pik/} (because trace tr(a) = a,a € R)
k=K+1 I=1 '
oo o0 oo _1
= Z Zﬂi/ “tr ["///7;1/{ an/"fllfkl"‘l’:?l—d’ + Ug,k'm,} "I’ik/}
k=K+1 I=1 r=1

(using the KL expansion of Gx(T,T"))

oo oo @
> H > il + Ug,klml} > ﬂiﬂl’/kﬂl’ﬁ/]
=1

k=K+1 I'=1

(by the linear and cyclic properties of trace)

< Z Mkt - ff[{ an//‘lll,k/' Tk ek m,} anﬂl’,k/"//,k/}
k=K+1 r=1
(because {nx/}, is a strictly decreasing sequence for each k)
1
= Z Mkt - ff{ m — {Z'flk/”w/k// kr 02, k'm,} Ug,klm,}
k=K+1
o0
< Y matr(ly)
k=K+1
(because trace of a positive definite matrix is positive)
o0 [e) o0
= Z Mkami < m; Z an/ —0,
k=K+1 k=K+1 I=1

as K diverges because m; is finite and the square integrable property of X;(s, T) in the assumption (Al.) ensures that
> D072 Mi s finite. Thus we show that E[||Yi(-,-) — Y/X(:,-)||?] converges to 0 as K diverges.
We use the similar reasoning to show that E[||\~/,K(-, - %KL(q )1?] converges to 0 as K and Ly's diverges. Specifically

from the previous part, we use the fact that for each k > 72, n?, - tr{(z,, Lk Wil + 02, )~ 1[1,k,1[1,k,}
nk1m; is finite. Most steps are identical thus omitted.

- K (o] - K Lk - 2
VA = VR =] [ {2 GumMonts) = Y- G D(s)} dsaT ]
k=1 I=1 k=1 I=1
P RN G
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= E[//{EK: i ak/'l/)k/(T)Qbk(S)}zdeT}

k=1I=L,+1

K 0 [
<> g U{(an//"/’/k//‘lpﬂw + Ug,klm,)71¢ik1"l’l?l—<l} —0

k=1/=L,+1 r=1
as K and Ly’s diverge because for each k, Y272, . nf, - tr{(z,, kWi Bl + 02 m) " 1[),k,1ll,k,} converges to
0 as Ly diverges.

The convergence of E[[|Yi(-, ) — Y/XL (-, )||?] to 0 follows from the fact that E[||Yi(,-) — Y<(-,)[I?] and E[|V/<(-, ) —
YAL(., 7] converge to 0. Furthermore by Markov inequality it is implied that Yi(s, T) — YKL (s, T)| converges to 0
in probability as K and L's diverge.

52.2. Case when response curves are measured with smooth error
(Section 4.2)

Now we consider the case when data is corrupted with smooth error process, €1 i(s); in other words, Yj(s) =
Xi(s, Tij) + €1,ij(s). The main difference from the case of having Yj;j(s) = Xi(s, Tj;) is that the sample covariance
of Yjj(s) is no longer an estimator of the marginal covariance function, X(s,s’), but is an estimator of =(s,s’) =
Y (s,s')+T(s,s’), where ['(s,s’) is a smooth covariance function of the error process, €1 j;(s).

As the additional error process, €;,;i(s), are correlated over s, but independent over i and j, the theoretical results
associated with the longitudinal dynamics (the second FPCA step) and their proofs remain the same. In the following
we provide proofs of the theoretical results given in Section 4.2 that correspond to the marginal FPCA step.

We start our proofs with showing that =(s, s') is an unbiased estimator of =(s, s').

Corollary 4.0.3

The sample covariance, =(s, s'), is an unbiased estimator of the covariance function, =(s,s') = ¥(s,s') + (s, s').
Proof. Proof is identical to that of Corollary 4.0.2 except that E{Y,-(s, Ta)Yi(s, Td)} = E{{X,-(s, Ta) +
e1ij(S)HXi(s', Ta) + €1vlj(5/)}:| =c((s,Tg), (5" Tq)) + (s, s), instead of c((s, Tq), (s', T4)) only. Specifically,

B ) = B 5o o Zst)ms)}

i=1 j=1
= E{Z: ,;lele(sww/m & (Tyr TaD)}
m; ;X;X;E{ s, Ta)Yi(s', Td)} { (Tyj € (Td_1,Td])} (because TILY;(-, T = t))
Z m ZZZ [{X (S Td)+€1 U(S)}{X (S Td) + €, u(s )}] { (TU S (Td—lde])}

= "d=1i=1 j=1
B z ZZZ{C((S Ta). (s, Ta)) +T(s,$)IP(T € (Tus, Tal)  (because X,(-, ) LLew(-)

i=1 M G5 1j=1
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= Z{C((S Ta). (s, Ta)) + (s, $)NP(T € (Tg-1, Tal) = /{C((S Ta),(s". Ta)) + (s, ') }dF (1)

d=1
:/C((S,Td),(g’,Td))dF(t)JrF(s,s’) (because/dF(t) =1)
=Y(s,8)+T(s s)==(s5),

where F is a true sampling distribution function of T.

Corollary 4.2.3 (Corollary 3 in Section 4.2)
Under the assumptions (Al.) - (A3.), and (A9.), for each (s, s'), \_(5 s')—=(s,s")| Ly 0asn d/verges And under the
assumptions (A1), (A2.), (A4.), (A9.)-(A11.), I=(-,-) = =(-,)|ls = 0 and supj|§WUk — €kl 22 0asn — 0.

Proof. This corollary includes three consistency results that are corresponding to the ones given in Theorems 1 and 2.
As proofs are very similar to the corresponding ones detailed earlier many steps are omitted. In the following we give
a short proofs for (i) the pointwise consistency of =(s, s'), (i) the Hilbert-Schmidt norm consistency of =(s, s'), and
(iii) the uniform consistency of EW,-J-k.

(i) The pointwise consistency of =(s, s')

To show the pointwise consistency of g(s, s’), we need to show that the following converges to O as n diverges:

o [Zad + Z Z add/} = [AZET[E[A(TWTH

d=1d'#d

_ [{_1}2/30, E[A(T)3|T = T4

which is analogous to Equation (S7).

{/\/12 1

v~ S ETEREAMAT)IT. T

— AA;I?{Z(S, s+ T(s,5)}°, (S27)

Because Xi(s, Tjj)’s and ¢€;(s)’s are mutually independent and ¢;;(s)’s are independent over i and j,
E[A(T)A(T)IT, Tl = E[Y;;(s)Yi(s") Yy () Yy ()]
= E[Xi(s, Ty)Xi(s', Ty)Xi(s, Typ)Xi(s', Ty)] +{T (s, 8')}?
+ (s, 8)e((s. Ty), (5. Tp)) + T (5.8 e((s. Ty, (5. Ty ).

Thus under the assumptions (A3.) and (A9.), E[A(T)A(T")|T, T'] is finite. Then using the same argument that we
used to show the convergence of Equation (S7), we can show that Equation (S27) converges to 0 as n diverges. It
implies that for each (s, s'), |=(s,s') — =(s, s')] - 0 as n diverges.

(ii) The Hilbert-Schmidt norm consistency of g(s, s)

To show the Hilbert-Schmidt norm consistency, we need to show that the following converges to 0 as n diverges:

Mo — My) - supg P, 1 2(My — M 1
{( 2 1)2 Pd d, * ( 22 1)Jr }
M5 My M; My

e[l Tol] (528)

This is the same equation as Equation (S17). Because X;(s, Tj;)'s and €j;(s)'s are mutually independent and €;;(s)’s
are independent over j and J,

E[IYsOI* 17 =Ty = E[IX;C. DI | T = Ty] +E[lewy()II*]
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+E[IXCTIP I T =Ty] - Ellleny (7] +4// c((s. Ty), (s". Ty (s, s")dsds,

where the first three terms are finite under the assumptions (A4.) and (A10.) and the last term is finite because by
Cauchy-Schwarz inequality

// c((s, Ty), (s, Tij) (s, s")dsds" < \/// c((s, Tij), (s’,7',-j))2d5ds’\/// (s, s")2dsds’.

Thus E[||Y(~,T)||4|T] is also finite and under the assumptions (A1.), (A2.), (A4.) and (A10.) Equation (528)
converges to 0 as n diverges. Then it follows that |=(-,-) — =(-, -)||s converges to 0 in probability as n diverges.

(iii) The uniform consistency ofgw,jk

Lastly the uniform consistency of §W,-J-k holds because from Equation (S22) we have supjlgw,-jk—fw,jk| <
supjs|Yi(s, Tij)| % [|¢x(-) — d«()lls, which is less than or equal to {sup;s|Xi(s, Ti)| + supsler,i(s)[} x [[dw(-) —
¢k () lls, where sup; 5| Xi(s, Ti;)| and sups|e1 ;;(s)| are asymptotically bounded under the assumptions (A6.) and (A11.).

S52.3. Extensions

The theoretical results presented in Section 4 are based on the assumption that data Yj;(s)'s are observed (i) fully,
(i) without white noise, €5 jj(s) = 0 for all s, and (iii) have mean zero. These assumptions are made for convenience,
and they can be relaxed as we now explain.

(i) The assumption that Yjj(s)'s are observed fully, as a continuous function, is quite common in theoretical study
involving functional data; see for example Cardot et al. (2003, 2004); Chen & Miiller (2012) among many others.
One possibility to bypass this assumption is to use the corresponding smooth trajectories instead. (ii) Suppose that
the profiles Yj;j(-)'s are observed on dense grids of points and the measurements are additionally corrupted with white
noise. Zhang & Chen (2007) showed that by smoothing each profile using local linear smoother, the true de-noised
curves are recovered with asymptotically negligible error, in the case of independent curves. Another possibility to
handle white noise is to use ideas similar to Yao et al. (2005). In Section 5 we illustrate numerically the effect of white
noise on the performance accuracy. (iii) Finally, the theoretical properties of the model components estimators remain
valid, when the mean function is non-zero and a consistent mean estimator is available; Chen & Miiller (2012) had
considered this problem and showed that under suitable assumptions such consistent mean estimator can be obtained
using bivariate smoothing.
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S3. Additional details for the simulation experiment

53.1. Description of the study

Errors are generated from €;(s) = eij1¢1(s) + ejpda(s) + €2,i;(s), where ej1, ;> and € ;;(s) are mutually independent
with zero-mean and variances equal to 02,02, and o2, respectively. The white noise variance, o2, is set based on
the signal to noise ratio (SNR),
var{Yi(s, T)}dsdT
g = s DyesdT (529)
(%e,l + CEe,2 +oe )

We consider the following experimental factors:

Case 1. covariance structure of the time-varying components:
(a) non-parametric covariance (NP): £ix(T) = Cik1Wi1(T) + CikoWia(T), where
(i) %11(T) = v/2c0s(2BT), 12(T) = v/2sin(2BT), Ciz1 X N(0,3), Ci1o 2 N(0, 1.5);
(ii) Yor(T) = v2c0s(4BT), 9a(T) = V2SIn(4BT), (o1 S N(0,2), Cia " N(O, 1).
(b) random effects model (REM): &€ix(T) = bjxo + bixk1 T with

(o) = ((0)- (% 3] Gm)=nl(5) (2 5))

(c) exponential autocorrelation model (Exp): &«(T) is a Gaussian process with mean zero, variance \x and
auto-correlation function corr{,ix(T), ,k(T")} = aeLT_T,‘ denoted by GP( A, pk). We set £1(T) M GP(4.5,0.9)
and £-(T) = GP(3,0.5).

Note that regardless of the generating models for £ix(T), we have that [var{,i(T)}dT is equal to 4.5 and 3

for k = 1, 2 respectively.

Case 2. number__of repeated measurements per subject:
(a) m; o Uniform({8,9, ..., 12}) (about 75% missing)
(b) m; i Uniform({15, 16, ..., 20}) (about 55% missing)

Case 3. variance of e;j:
(a) (02,,02,) = (0,0) (white noise only, i.e. €;(s) S N(0, 02))
(b) (021.02,) = (0.7,0.3).

The simulation results for the Case 3.(a), i.e. no smooth error, are included in the Supplementary Material.
Case 4. signal to noise ratio: (a) SNR =1 (ce? = 6.5), and (b) SNR =5 (ce® = 0.5)
Case 5. number of subjects: (a) n =100, (b) n =300, and (c) n =500

For each generated sample of size n we form a training set and a test set. To determine the test set we randomly select
10 subjects from the sample. The test set is formed by collecting these subjects’ last functional observation; hence the
test set contains 10 curves. The remaining functional observations for the 10 subjects and the data corresponding to
the remaining subjects in the sample form the training set. Our model is fitted using the training set and the methods
outlined in Section 3. To be more specific, the bivariate mean function, u(s, T), is modeled using 50 cubic spline basis
functions obtained from the tensor product of ds = 10 basis functions in direction s and d =5 in T. The smoothing
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parameters are selected via REML. The finite truncations K and Lk's are all estimated using the pre-specified level
PVE = 0.95.

Estimation accuracy for the model components is evaluated using integrated mean squared errors (IMSE): specifically,
for the bivariate mean function IMSE(Y) = S Nam [[{a"m(s, T) —u(s, T)}?>dsdT/Nsim, and for the univariate

isim=1

eigenfunctions II\/ISE(C/E\k) = ::2““_1 f{d)’s”"(s) ®x(s)}2ds/Nsim, k = 1,2. The prediction performance is assessed
through the accuracy in predicting the time-varying model components, £(T), and in predicting the response
curve, Yj(s, T) For the former assessment we use the in-sample integrated prediction errors (IPE) defined as
IPE(,x) = Z m oS f{A'S'm(T) 'S‘W (T)}2dT/ (nNS,m) k =1,2. For the later assessment we use the in-sample

isim=1

IPE (IN-IPE) defined as IN — IPE(Y) = ZE:”_l f{Y'S'm(s) =Yy tim (5)}2ds/(Nsim S, m;), where Yii(s) is
the true signal, i.e. without measurement error e,J(s) Also we use the out-of-sample IPE (OUT-IPE) defined as
OUT — IPE(Y) = S M ictest Setf{Y'S'm(s) Y*iim (5Y}2ds /(10Nsim) and Y;i(s) is the true signal in the test set.

isim=1 m;
The results are based on Ns;,, = 1000 simulations.

In terms of estimation performance and prediction of £(7T) there is no alternative approach. On the other hand, in
terms of model prediction error and prediction of a subject’s future curve there are two possible alternatives. One is
the CM model of Chen & Miiller (2012). However due to the high computational expense required by their method,
we have to restrict our comparison to few scenarios only: m; ~ {8, ..., 12} number of repeated curves per subject,
Case 3(b), and SNR = 1. The approach of Chen & Miiller (2012) requires specification of several kernel bandwidths;
due to the increased computation burden we use the pre-specified bandwidth h = 0.1 in smoothing both the mean
and covariance functions. Even with these adjustments there is an order of magnitude difference in the computational
cost (when n = 100 the method of Chen & Miiller (2012) takes approximately 984 seconds, while our approach takes
about 7 seconds). As well, we also used the pre-specified level PVE = 0.95 to be consistent with our approach. A
second alternative approach for prediction of a subject’s future visit trajectory is a rather naive approach: let the future
prediction equal the average of all previously observed profiles for that subject. For example, the naive predictor of
a profile of some subject in the test set is equal to the average of all profiles available in the training set for the
corresponding subject.

S53.2. Additional results

Simulation results for the case when the error process has trivial covariance structure are presented in Table S1. The
results show that the prediction accuracy is greatly improved when the error process is just white noise. The other
factors we investigated in the study seem to have the similar effects on the estimation and prediction accuracies as
they did for the case of having smooth error process (Table 1 in Section 5). Based on the results presented in both
Tables 1 and S1, it seems that the exponential covariance structure (Exp) is most challenging; this most likely is due to
the (very) large correlation coefficients used p; = 0.9 and p, = 0.5, which result in high temporal dependence even for
the observations that are furthest apart T =0and T =1, as T € [0, 1]. For completeness the average computational
times of the proposed method are studied for all the cases and they are presented in Tables S2 and S3.
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Table S1. Simulation results for estimation and prediction accuracy based on N, = 1000 simulations (white noise only)

iid

m; ~ {8, ...,12}andSNR = 1

m o1 ®> ¢ €  IN-IPE IN-IPEjave OUT-IPE  OUT-IPEnive
NP (a) n=100 | 0.088 0.005 0014 0.169 0.150 0.173 7779 0.697 11.114
n=300|0.029 0.0l 0.010 0067 0.066 0.109 7.788 0.288 11.395
n=500 | 0.017 0.001 0.010 0.048 0.047 0.092 7.778 0.196 11.173
REM (b) n=100 | 0.110 0.035 0.043 0.299 0.303 0.193 1.197 0.705 2.140
n=300|0037 0.009 0018 0.137 0.135 0.162 1.198 0.467 2.161
n=500| 0022 0.005 0.014 0.108 0.102 0.156 1.198 0.408 2.131
Exp(c) n=100 | 0.091 0.032 0.041 0330 0526 0.386 1.529 1.255 2.494
n=300 | 0.030 0.009 0.018 0.209 0.358 0.353 1.529 1.000 2.472
n=500 | 0.017 0.005 0.014 0.189 0.323 0.344 1.529 0.898 2.481
m; % {15,...,20}andSNR = 1
7 o ¢ & €&  IN-IPE  IN-IPEpave  OUT-IPE  OUT-IPEnaie
NP (a) n=100 | 0.073 0.002 0011 0.092 0.062 0.119 7.803 0.318 10.739
n=300 | 0.025 <0.001 0.009 0037 0.029 0.073 7.798 0.145 10.937
n=500 | 0.015 <0.001 0.009 0.026 0.023 0.063 7.791 0.112 10.620
REM (b) n=100| 0093 0.032 0.041 0251 0.269 0.174 0.895 0.493 1.818
n=300|0032 0.009 0018 0.120 0.124 0.156 0.896 0.372 1.876
n=500 | 0.019 0.005 0.014 0.095 0.094 0.151 0.897 0.347 1.811
Exp () n=100 | 0.078 0.030 0.039 0.276 0.402 0.371 1.241 0.910 2.128
n=300 | 0.026 0.009 0.018 0.196 0.274 0.357 1.243 0.797 2.145
n=500 | 0.015 0.005 0.014 0.185 0.246 0.355 1.245 0.774 2.124
m; S {8,...,12}andSNR = 5
n o1 ¢ & €  IN-IPE IN-IPEpave  OUT-IPE  OUT-IPEnae
NP (a) n=100 | 0.087 0.009 0011 0.160 0.135 0.123 7.173 0.568 10.430
n=300|0029 0.001 0.003 0052 0.046 0.061 7.185 0.210 10.715
n=500 | 0.017 0.001 0.003 0.034 0.030 0.046 7.176 0.134 10.490
REM (b) n=100 | 0.109 0.048 0.049 0.335 0356 0.151 0.591 0.603 1.454
n=300 | 0.037 0.013 0.014 0.139 0.143 0.123 0.596 0.389 1.477
n=500 | 0.022 0.007 0.009 0.107 0.103 0.119 0.596 0.342 1.447
Exp (c) n=100 | 0.090 0.046 0.048 0.357 0.565 0.340 0.922 1.219 1.806
n=300|0030 0.012 0.014 0207 0.358 0.309 0.927 0.995 1.787
n=500 | 0.017 0.007 0.009 0.186 0.316 0.301 0.928 0.867 1.795
m; % {15,...,20}andSNR = 5
m o1 #> & €  IN-IPE  IN-IPEjave OUT-IPE  OUT-IPEnaive
NP (a) n=100 | 0.073 0.004 0.006 0.091 0.060 0.087 7.458 0.278 10.374
n=300 | 0.025 0.001 0.003 0.030 0.022 0.039 7.455 0.105 10.574
n=500 | 0.015 <0.001 0.002 0019 0.015 0.029 7.452 0.072 10.197
REM (b) n=100 | 0.093 0.048 0.049 0.303 0.338 0.143 0.550 0.440 1.451
n=300 | 0.032 0012 0014 0127 0.136 0.125 0.553 0.323 1.511
n=7500|0.019 0.007 0.009 0.097 0.099 0.120 0.554 0.208 1.442
Exp (c) n=100 | 0.078 0.043 0.045 0.305 0.442 0.337 0.897 0.866 1.759
n=300|0.026 0012 0.014 0200 0277 0.325 0.900 0.763 1.777
n=500 | 0.015 0.007 0.009 0.186 0.243 0.323 0.902 0.740 1.756
Stat 2012, 00 1-34 29 Copyright © 2012 John Wiley & Sons, Ltd.

Prepared using staauth.cls



Stat SY Park and AM Staicu

Table S2. Computational time (seconds) corresponding to Table 1

m; % {8, ..., 12}andSNR = 1
n=100 n=300 n=500
NP(a) | 7.369 15892 21.418
REM (b) | 9282  11.347 22559
Exp (c) | 7.514  16.229  17.109

mi % {15, ...,20}andSNR = 1
NP (a) | 9.257 24.141 32202
REM (b) | 11.230 17.061 32519

Exp (c) | 11.096  23.341  33.279

m; {8, ..., 12}andSNR = 5
NP (a) 7.405 16.162 21.507
REM (b) | 9.609  13.283  21.166

Exp (c) | 8412 15446  17.653

m; % {15, ...,20}andSNR = 5
NP (a) | 9.303 24321 31.964
REM (b) | 10.477 17.446  35.025
Exp (c) | 10.683  18.844  32.851

Table S3. Computational time (seconds) corresponding to Table S1

m; % {8, ..., 12}andSNR = 1

n=100 n=300 n=500
NP (a) | 13.760 12.655  42.346

REM (b) | 16.776  24.044  39.088
Exp (c) | 10.541 20.195  30.071

m; % {15, ...,20}andSNR = 1

NP (a) | 9.043  58.091 60.064
REM (b) | 28.550  35.029  53.055
Exp (c) | 13.641 30.569  43.809

m; % {8, ..., 12}andSNR = 5
NP (a) | 8222 27.563  50.990
REM (b) | 11.318 17.683  24.464

Exp (c) | 10.888 18.627  24.939

m; % {15, ...,20}andSNR = 5
NP (a) 10.038 51.146 71.719
REM (b) | 13.810 24.568  36.225
Exp (c) | 13.415 25850  37.066
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S4. Additional figures for the DTI data analysis

This section includes figures that are discussed in the DTI data analysis.

Figure S1. Fitted varying coefficient model, (s, T) = lo(s) +6T(S)T (left), and estimated slope function, BT(S) (right)
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Figure S2. Scree plot of the marginal FPCA
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Figure S3. Estimated eigenfunctions of the marginal FPCA for FA with PVE = 95%
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Figure S4. Estimated basis coefficient functions, E,-k(T) using a random coefficients linear model
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