Fig. S1

Fig. S2

T3 responsiveness

Fig. S4

Differential gene expression

Acpp, Aga, Agxt2l2, Anxa2, Athl1, C4b, Cbr4, Ccnh, Celsr1, Col15a1, Cxcl11, Dennd2d, Dusp6, Fam92a, Fut8, **Gpam**, Hfe2, Hsbp1, Khdrbs3, Klhl5, Lclat1, Lgals8, Lrtm1, Mina, Mms22l, Mut, Nrg1, Ntrk2, Pex12, Pgm3, Rad9b, Rhbdf2, Sema5b, Sesn3, Shkbp1, Slc25a21, Slc2a5, Slc38a6, Sulf2, Supt7l, Tbc1d19, Tmem126b, Tnfrsf19, Top1mt, Tpm2, Trp53i11, Wfdc2, Zbtb37

Down regulated

Akap8l, Amfr, Atoh7, B3gnt2, Bach1, Cdc42bpb, Csrp2, Eif1a, Ephb3, Fam109a, Fech, Folr4, Frmd5, Golga4, Hectd1, Kcmf1, Nt5c3, Onecut2, Prdm2, Ptpn3, -Ptpru, Rab20, Slc38a2, Slc6a6, Slc7a14, Stard4, Tbx15, Terf2ip, Tmem183a, Ubp1, Vwa5b1, Wdfy3, Wipi1, Zmym2

Supplemental Figures Legends

Suppl. 1 – Relative liver Dio3 (A) and Dio1 (B) mRNA levels at the indicated ages; (C) Representative Western blot analysis of FASN and quantitation by densitometry; Actin was used as internal control; (D) Serum T4 and T3 Levels of control and ALB-D2KO mice (n=5-6); (E) Body weight evolution in males of ALB-D2KO and controls; (F) Body weight evolution in female ALB-D2KO and control animals; (G) Food intake measured by the C.L.A.M.S. during light and dark cycles in ALB-D2KO mouse and controls after 7 weeks of chow diet or HFD and (I) Quantification of the fecal volume collected during 72h; the result is shown as total content in 24h period; Metabolic profile of ALB-D2KO and controls animals: Respiratory coefficient (J), oxygen consumption (K) corrected by lean body mass in grams and energy expenditure (L) in animals fed with chow diet; all the measures were made on the third day, after 48h of acclimatization to individual metabolic cages in the C.L.A.M.S. Entries are mean \pm SEM of 4-6 animals *p<0.05 and ** p<0.01 vs. respective control.

Suppl. 2 - (A) X ambulatory movement and (B) Y ambulatory movement measured by the C.L.A.M.S. during light and dark cycles in ALB-D2KO and control animals fed with chow diet; (C) Blood glucose concentrations at the indicated time points after IP glucose injection (2g/kg) in 2-month-old ALB-D2KO and controls animals; (D) Gross liver morphological findings in ALB-D2KO mouse and controls after 7 weeks of chow diet or HFD; (E) representative liver slide stained with H&E (original magnification, ×10); (F) Global methylation profile in the ALB-D2KO and control animals; (G) Methylation profile of different regions - promoter, 5UTR, exons, introns and 3UTR in the ALB-D2KO and control animals; (H) Food intake measured by the C.L.A.M.S. during light and dark cycles in ALB-D2KO and control animals fed with HFD for 7 weeks; Metabolic profile of ALB-D2KO and controls animals fed with high fat diet: Respiratory coefficient (I) and oxygen consumption (J) corrected by lean body mass in grams. Entries are mean \pm SEM of 4-6 animals. *p<0.05 vs. respective control.

Suppl. 3 - (A) Energy expenditure in animals fed with high fat diet; Relative Ucp-1mRNA (B) and Dio2 mRNA (C) levels in BAT of ALB-D2KO and control mice fed with chow diet and HFD. Results are expressed using 18S mRNA levels as internal control and normalized to the levels observed in the control animals fed with chow diet; (D) Relative 18S mRNA levels in adult BAT of ALB-D2KO and control mice fed with chow diet and HFD used to normalized the gene expression levels observed in B and C; (E) X ambulatory movement and (F) Y ambulatory movement measured by the C.L.A.M.S. during light and dark cycles in ALB-D2KO and control animals feeding with HFD; (G) Venn diagram indicating common genes between (i) differential expression analysis of HFD-ALB-D2KO vs. HFD-control mouse liver microarray (Dataset S6) and (ii) differentially methylated regions (DMRs) (Dataset S3); some of the gene sets by GSEA and the 12 overlapping genes are indicated; (H) Relative 18S mRNA levels in embryonic (E12 and E15), neonatal (P1), newborns with 5 days of age (P5) and adult livers of ALB-D2KO and controls; this data was used to normalized the gene expression levels observed in the figure 1A; (I) Relative 18S mRNA levels in embryonic (E12 and E15), neonatal (P1) and adult livers of ALB-D2KO and control; this data was used to normalized the gene expression levels observed in the figure 2; (J) Relative 18S mRNA levels in adult liver of ALB-D2KO and control mice fed with chow diet and HFD used to normalize the gene expression levels observed in figure 5; (K) Relative mRNA levels of T3-responsive genes in hypothyroid mice treated with T3. Results are expressed using 18S mRNA levels as internal control and normalized to the levels observed in the respective control hypothyroid (black line); Entries are mean \pm SEM of 3-7 animals. *p<0.05 vs. respective control.

Suppl. 4 - Effect of D2 inactivation on the Liver transcriptome in ALB-D2KO mouse. (A) heat map of the 50 most enriched and 50 most down-regulated genes in adult ALB-D2KO liver and controls by differential expression analysis where expression values are represented as colors (red: higher level; blue: lower level) with the degree of color saturation indicating degree of expression; (B) Same as in A, but except that comparison is made between both groups in HFD and (C-D) Same as in A, but except that comparison is made between chow and HFD for both groups.

Suppl. 5 – Liver transcriptome modifications in response to HFD in ALB-D2KO vs control mice. Venn diagram indicating common HFD-enriched genes between control – Dataset S8- (blue circle) and ALB-D2KO –Dataset S9- (yellow circle) animals vs DMRs of the same samples (Dataset S3); all overlapping genes area are indicated.

Supplemental Tables

 Table S1- Mendelian distribution between genotypes

		Cre allele			
Percentage	WT	FloxD2	FloxD2	WT	CRE
		Homozygous	Heterozygous		
Expected	25%	25%	50%	25%	75%
acquire	26%	24%	51%	27%	73%

Note: percentage was calculated using 180 animals born from 8 different breeders. The average number of pups from each litter was 9.

Tissue	Control	ALB-D2KO
BAT	0.05±0.002	0.05±0.005
Brain	0.18±0.002	0.19±0.006
Epidid. fat	0.24±0.01	0.21±0.03
Liver	0.53±0.02	0.56±0.03
Muscle	0.05±0.001	0.06±0.004
Pancreas	0.09±0.007	0.09±0.005
BMD	55.6±0.0008	56.4±0.0008

Table S2- Morphometric data from ALB-D2KO vs.control mice kept on chow diet.

All tissues are express in *g* of tissue/tibia length *cm*. BMD: bone mineral density (mg/cm²). Tissues weigh and BMD was performed with animals in 14 weeks of age. All values in the table are \pm SEM (n=3-10).

# GREAT version 2.0.2 # Term Name	Binom Rank	Binom Raw P-Value	Binom FDR Q-Val	Binom Fold Enrichment	Binom Observed Region Hits	Binom Region Set Coverage	Hyper Rank	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Observed Gene Hits	Hyper Total Genes	Hyper Gene Set Coverage
Enriched in ALB-D2KO on chow diet												
Neuromuscular process controlling balance	98	0.000003	0.0002	2.18	44	0.014	313	0.0009	2.41	21	46	0.005
Myoblast cell fate commitment	106	0.000004	0.0004	4.91	13	0.004	436	0.0048	5.28	5	5	0.001
Skin development	109	0.000005	0.0004	2.15	43	0.014	432	0.0046	2.11	22	55	0.006
Exploration behavior	118	0.000008	0.0006	4.61	13	0.004	516	0.0150	3.96	6	8	0.002
Negative regulation of lipid biosynthetic process	125	0.000011	0.0008	2.73	25	0.008	414	0.0040	2.56	15	31	0.004
Regulation of dendritic spine morphogenesis	128	0.000012	0.0008	3.37	18	0.006	630	0.0381	3.08	7	12	0.002
Negative regulation of lipid metabolic process	153	0.000045	0.0025	2.32	29	0.009	492	0.0107	2.16	18	44	0.005
Ureter development	187	0.000139	0.0064	2.62	20	0.006	516	0.0150	3.96	6	8	0.002
Peyer's patch development	193	0.000155	0.0069	3.67	12	0.004	614	0.0318	3.52	6	9	0.002
Mesonephros development	224	0.000330	0.0126	2.33	22	0.007	482	0.0102	2.93	10	18	0.003
Nephron tubule formation	230	0.000352	0.0131	2.27	23	0.007	304	0.0008	3.77	10	14	0.003
Metanephric collecting duct development	252	0.000484	0.0165	3.72	10	0.003	333	0.0012	5.28	6	6	0.002
Negative regulation of reproductive process	259	0.000561	0.0186	2.15	24	0.008	414	0.0040	2.56	15	31	0.004
Positive regulation of cell morphogenesis involved in differentiation	264	0.000600	0.0195	2.06	26	0.008	351	0.0016	2.99	13	23	0.003
Mammary gland epithelial cell differentiation	265	0.000602	0.0195	2.46	18	0.006	509	0.0143	3.25	8	13	0.002
Regulation of neurotransmitter transport	276	0.000682	0.0212	2.05	26	0.008	463	0.0074	2.35	16	36	0.004
Metanephric nephron morphogenesis	285	0.000817	0.0246	2.09	24	0.008	267	0.0004	3.52	12	18	0.003
Lens induction in camera-type eye	290	0.000909	0.0269	2.85	13	0.004	443	0.0052	4.53	6	7	0.002
Embryonic camera-type eye morphogenesis	295	0.000965	0.0281	2.03	25	0.008	456	0.0066	2.76	12	23	0.003
Actin cytoskeleton reorganization	307	0.001060	0.0296	2.05	24	0.008	421	0.0041	2.64	14	28	0.004

Table S3- Enriched GO terms in methylated regions (DMRs) as observed in GREAT analysis obtained from adult ALB-D2KO and control mice kept on a chow diet.

Binom Rank: Binomial rank; Binom Raw P-Value: Binomial raw P-Value; Binom FDR q-val: Binomial false discovery rate q-value; Biom Fold Enrichment: Binomial Fold Enrichment; Binom Observed Region Hits: Binomial observed region hits and Binom Region Set Coverage: Binomial region set coverage.

Hyper Rank: Hyperbrowser rank; Hyper FDR q-val: Hyperbrowser false discovery rate q-value; Hyper Fold Enrichment: Hyperbrowser fold enrichment; Hyper observed gene Hits: Hyperbrowser total genes: Hyperbrowser total genes and Hyper gene Set Coverage: Hyperbrowser gene set coverage.

The test set of 3,077 genomic regions picked 3,828 (19%) of all 20,221 genes.

GO Biological Process has 8,583 terms covering 15,210 (75%) of all 20,221 genes, and 605,197 term - gene associations.

8,583 ontology terms (100%) were tested using an annotation count range of [1, Inf].

Table S4- Genomic Regions Enrichment of Annotations Tool platform of positive DMRs in the Liver ofALB-D2KO and control mice. (ALB-D2KO: n = 3, control: n = 3). Gene ontology biological process -GO:0051055 Negative regulation of lipid biosynthetic process.

Gene Symbol	Description	DMR region
Atp1-1	ATDasa Nay /Ky transporting alpha 1 polypoptide	chr3:101621500-101622000
Ацріаї	ATPase, Na+/K+ transporting, aipila 1 polypeptide	chr3:101213500-101214000
Fgf15	fibroblast growth factor 15	chr7:152095000-152095500
Hrh1	histamine receptor H1	chr6:114358500-114359000
		chr1:123222500-123223000
Insig2	insulin induced gene 2	chr1:123217000-123217500
		chr1:122860500-122861000
		chr4:61377000-61377500
		chr4:61363000-61363500
Mup5	major urinary protein 5	chr4:61360000-61360500
		chr4:61238500-61239000
		chr4:61225500-61226000
Mup7	major urinary protein 7	chr4:60133500-60134000
Mup8	major urinary protein 9	chr4:60133500-60134000
Ddafa	platalat derived growth factor, alpha	chr5:139432500-139433000
Pugia	platelet delived growth factor, alpha	chr5:139351500-139352000
Ddafb	platalat derived growth factor. B polypoptide	chr15:79908500-79909000
Pugib	platelet derived growth factor, B polypeptide	chr15:79780500-79781000
Prox1	prospero-related homeobox 1	chr1:192140000-192140500
Sik1	Salt inducible kinase 1	chr17:31871500-31872000
Creci1	ancil homolog 1 (Drosonhila)	chr2:167399000-167399500
Shart	shall homolog 1 (Drosophila)	chr2:167400500-167401000
Cod1	superavida discutase 1 seluble	chr16:90098000-90098500
5001	superoxide dismutase 1, soluble	chr16:90126000-90126500
Trib3	tribbles homolog 3 (Drosophila)	chr2:152195000-152195500
Wnt4	wingless-related MMTV integration site 4	chr4:136628000-136628500

DMRs: Differentially methylated regions; chr: chromosome

Table S5- Genomic Regions Enrichment of Annotations Tool platform of positive DMRs in the Liver ofALB-D2KO and control mice. (ALB-D2KO: n = 3, control: n = 3). Gene ontology biological process -GO:0045833 Negative regulation of lipid metabolic process.

Gene Symbol	Description	DMR region
		chr19:54123500-54124000
Adra2a	adrenergic receptor, alpha 2a	chr19:54963500-54964000
		chr3:101621500-101622000
Atp1a1	ATPase, Na+/K+ transporting, alpha 1 polypeptide	chr3:101213500-101214000
Cidea	cell death-inducing DNA fragmentation factor, alpha	chr18:67459000-67459500
Cnr1	cannabinoid receptor 1 (brain)	chr4:33613500-33614000
Fgf15	fibroblast growth factor 15	chr7:152095000-152095500
Hrh1	histamine receptor H1	chr6:114358500-114359000
		chr1:123222500-123223000
		chr1:123217000-123217500
Insig2	insulin induced gene 2	chr1:122860500-122861000
		chr4:61377000-61377500
		chr4:61363000-61363500
		chr4:61360000-61360500
		chr4:61238500-61239000
Mup5	major urinary protein 5	chr4:61225500-61226000
Mup7	major urinary protein 7	chr4:60133500-60134000
Mup8	major urinary protein 9	chr4:60133500-60134000
		chr5:139432500-139433000
Pdgfa	platelet derived growth factor, alpha	chr5:139351500-139352000
		chr15:79908500-79909000
Pdgfb	platelet derived growth factor, B polypeptide	chr15:79780500-79781000
Prox1	prospero-related homeobox 1	chr1:192140000-192140500
Sik1	salt inducible kinase 1	chr17:31871500-31872000
		chr2:167399000-167399500
Snai1	snail homolog 1 (Drosophila)	chr2:167400500-167401000
		chr16:90098000-90098500
Sod1	superoxide dismutase 1, soluble	chr16:90126000-90126500
Trib3	tribbles homolog 3 (Drosophila)	chr2:152195000-152195500
Wnt4	wingless-related MMTV integration site 4	chr4:136628000-136628500

DMRs: Differentially methylated regions; chr: chromosome.

Table S6- Molecular signature pathway in methylated regions (DMRs) as observed in GREAT analysis obtained from adult ALB-D2KO and control mice kept on a chow diet.

# GREAT version 2.0.2 # Term Name	Binom Rank	Binom Raw P-Value	Binom FDR Q-Val	Binom Fold Enrichment	Binom Observed Region Hits	Binom Region Set Coverage	Hyper Rank	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Observed Gene Hits	Hyper Total Genes	Hyper Gene Set Coverage
Enriched in ALB-D2KO on chow diet												
Glioma	1	0.0000001	0.00009	2.45	45	0.015	8	0.006	2.16	25	61	0.007
Ca++/ Calmodulin-dependent Protein Kinase	4	0.0000004	0.00008	3.96	20	0.006	11	0.008	3.66	9	13	0.002
Activation												
Genes involved in CREB phosphorylation	7	0.0000026	0.00032	3.36	21	0.007	28	0.030	2.97	9	16	0.002
through the activation of CaMKII												
Transcription factor CREB and its extracellular	8	0.0000151	0.00166	2.68	25	0.008	43	0.043	2.35	12	27	0.003
signals												
Genes involved in CREB phophorylation	15	0.0002025	0.01188	2.31	24	0.008	35	0.036	2.44	12	26	0.003
through the activation of Ras												
Cyclins and Cell Cycle Regulation	16	0.0002253	0.01239	2.87	16	0.005	27	0.030	2.54	12	25	0.003
Genes involved in HDL-mediated lipid	18	0.0002525	0.01234	4.04	10	0.003	7	0.006	4.23	8	10	0.002
<u>transport</u>												
Genes involved in Collagen-mediated	19	0.0002813	0.01303	2.36	22	0.007	13	0.008	2.86	13	24	0.003
activation cascade												
Genes involved in G1 Phase	20	0.0004051	0.01783	3.11	13	0.004	28	0.030	2.97	9	16	0.002
Genes involved in Integrin alphallbbeta3	31	0.0010389	0.02949	2.58	15	0.005	22	0.014	2.76	12	23	0.003
signaling												
Genes involved in Platelet Aggregation (Plug	41	0.0021308	0.04573	2.24	17	0.006	21	0.014	2.64	13	26	0.003
Formation)												
Actin cytoskeleton reorganization	307	0.001060	0.0296	2.05	24	0.008	421	0.0041	2.64	14	28	0.004

Binom Rank: Binomial rank; Binom Raw P-Value: Binomial raw P-Value; Binom FDR q-val: Binomial false discovery rate q-value; Biom Fold Enrichment: Binomial Fold Enrichment; Binom Observed Region Hits: Binomial observed region hits and Binom Region Set Coverage: Binomial region set coverage.

Hyper Rank: Hyperbrowser rank; Hyper FDR q-val: Hyperbrowser false discovery rate q-value; Hyper Fold Enrichment: Hyperbrowser fold enrichment; Hyper observed gene Hits: Hyperbrowser total genes: Hyperbrowser total genes and Hyper gene Set Coverage: Hyperbrowser gene set coverage.

The test set of 3,077 genomic regions picked 3,828 (19%) of all 20,221 genes.

MSigDB Pathway has 880 terms covering 5,986 (30%) of all 20,221 genes, and 37,583 term - gene associations.

880 ontology terms (100%) were tested using an annotation count range of [1, Inf].

Table S7- Genomic Regions Enrichment of Annotations Tool platform of positive DMRs in the Liver ofALB-D2KO and control mice. (ALB-D2KO: n = 3, control: n = 3). Molecular signature pathway – Systematicname M5056: Genes involved in HDL- mediated lipid transport.

Gene Symbo	l Description	DMR region					
Abca1	ATP-binding cassette, sub-family A (ABC1), member 1	chr4:53122000-53122500					
Abcg1	ATP-binding cassette, sub-family G (WHITE), member 1	chr17:31262000-31262500					
Alb	albumin	chr5:90860500-90861000					
Amn	amnionless	chr12:112595500-112596000					
Apo 1	analinantatin A	chr9:45907000-45907500					
Арбат		chr9:46007000-46007500					
Cubn	cubilin (intrinsic factor-cobalamin receptor)	chr2:13413000-13413500					
Lcat	lecithin cholesterol acyltransferase	chr8:108485000-108485500					
		chr5:125822000-125822500					
Scarb1	scavenger receptor class B, member 1	chr5:125679500-125680000					
DMRs: Differ	DMRs: Differentially methylated regions.						

Table S8- Mouse Genome Informatics – phenotype in 437 DMRs overlapped with k4me1/3 and K36me3 (active chromatin state) as observed in GREAT analysis obtained from adult ALB-D2KO mice.

# GREAT version 2.0.2 # Term Name	Binom Rank	Binom Raw P- Value	Binom FDR Q- Val	Binom Fold Enrichment	Binom Observed Region Hits	Binom Region Set Coverage	Hyper Rank	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Observed Gene Hits	Hyper Total Genes	Hyper Gene Set Coverage
abnormal hepatobiliary system physiology	3	7.91E-07	0.0019	2.49	36	0.0824	44	0.0046	2.27	30	363	0.04
abnormal thymus size	4	9.22E-07	0.0017	2.47	36	0.0824	18	0.0005	2.57	32	342	0.04
small thymus	5	1.21775E-06	0.0018	2.61	32	0.0732	22	0.0010	2.64	28	291	0.04
abnormal liver physiology	6	1.36707E-06	0.0017	2.55	33	0.0755	48	0.0060	2.30	28	334	0.04
abnormal thymus morphology	7	1.70104E-06	0.0018	2.17	44	0.1007	15	0.0003	2.35	40	467	0.05
increased organ/body region tumor incidence	11	9.45961E-06	0.0063	2.05	43	0.0984	57	0.0102	2.01	35	479	0.05
abnormal double-negative T cell morphology	13	1.69402E-05	0.0095	2.51	27	0.0618	36	0.0030	2.65	24	249	0.03
increased gland tumor incidence	14	1.79919E-05	0.0094	2.68	24	0.0549	96	0.0233	2.52	18	196	0.02
increased susceptibility to autoimmune	18	2.7241E-05	0.0111	53.99	3	0.0069	51	0.0069	27.47	3	3	0.00
hemolytic anemia												
abnormal trophoblast layer morphology	19	3.27147E-05	0.0126	3.37	16	0.0366	90	0.0212	3.13	13	114	0.02
branchial arch hypoplasia	22	5.17537E-05	0.0172	7.52	7	0.0160	82	0.0176	8.59	5	16	0.01
decreased circulating HDL cholesterol level	25	5.5644E-05	0.0163	4.07	12	0.0275	50	0.0070	4.66	10	59	0.01
increased mammary gland tumor incidence	26	6.22775E-05	0.0175	4.02	12	0.0275	104	0.0294	3.62	10	76	0.01
increased CD8-positive T cell number	27	6.30996E-05	0.0171	3.53	14	0.0320	61	0.0111	3.47	13	103	0.02
increased single-positive T cell number	29	8.83508E-05	0.0223	2.86	18	0.0412	84	0.0175	2.70	17	173	0.02
thymus hypoplasia	32	9.10019E-05	0.0208	2.67	20	0.0458	92	0.0224	2.62	17	178	0.02
abnormal trophoblast giant cells	34	9.43171E-05	0.0203	3.85	12	0.0275	130	0.0477	3.31	10	83	0.01
decreased double-positive T cell number	37	0.00013366	0.0264	2.67	19	0.0435	92	0.0224	2.62	17	178	0.02

Binom Rank: Binomial rank; Binom Raw P-Value: Binomial raw P-Value; Binom FDR q-val: Binomial false discovery rate q-value; Biom Fold Enrichment: Binomial Fold Enrichment; Binom Observed Region Hits: Binomial observed region hits and Binom Region Set Coverage: Binomial region set coverage.

Hyper Rank: Hyperbrowser rank; Hyper FDR q-val: Hyperbrowser false discovery rate q-value; Hyper Fold Enrichment: Hyperbrowser fold enrichment; Hyper observed gene Hits: Hyperbrowser observed gene hits; Hyper total genes: Hyperbrowser total genes and Hyper gene Set Coverage: Hyperbrowser gene set coverage.

The test set of 437 genomic regions picked 736 (4%) of all 20,221 genes.

Mouse Phenotype has 7,310 terms covering 6,642 (33%) of all 20,221 genes, and 456,354 term - gene associations.

7,310 ontology terms (100%) were tested using an annotation count range of [1, Inf].

Table S9- Osborne Annotated Disease Ontology in 437 DMRs overlapped with k4me1/3 and K36me3 (active chromatin state) as observed in GREAT analysis obtained from adult ALB-D2KO mice.

# GREAT version 2.0.2 # Term Name	Binom Rank	Binom Raw P-Value	Binom FDR Q-Val	Binom Fold Enrichment	Binom Observed Region Hits	Binom Region Set Coverage	Hyper Rank	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Observed Gene Hits	Hyper Total Genes	Hyper Gene Set Coverage
hepatitis C	10	1.47E-04	0.033	2.58	20	0.046	78	4.17E-02	2.21	18	224	0.024
<u>hepatitis</u>	14	2.37E-04	0.038	2.04	30	0.069	75	2.41E-02	1.92	28	401	0.038

Binom Rank: Binomial rank; Binom Raw P-Value: Binomial raw P-Value; Binom FDR q-val: Binomial false discovery rate q-value; Biom Fold Enrichment: Binomial Fold Enrichment; Binom Observed Region Hits: Binomial observed region hits and Binom Region Set Coverage: Binomial region set coverage.

Hyper Rank: Hyperbrowser rank; Hyper FDR q-val: Hyperbrowser false discovery rate q-value; Hyper Fold Enrichment: Hyperbrowser fold enrichment; Hyper observed gene Hits: Hyperbrowser total genes: Hyperbrowser total genes and Hyper gene Set Coverage: Hyperbrowser gene set coverage.

The test set of 437 genomic regions picked 736 (4%) of all 20,221 genes.

Disease Ontology has 2,220 terms covering 7,558 (37%) of all 20,221 genes, and 224,634 term - gene associations.

2,220 ontology terms (100%) were tested using an annotation count range of [1, Inf].

Table S10- Enriched GO biological process in 276 DMRs overlapped with k27me3 (repressed chromatin state) as observed in GREAT analysis obtained from adult ALB-D2KO mice.

# GREAT version 2.0.2 # Term Name	Binom Rank	Binom Raw P-Value	Binom FDR Q-Val	Binom Fold Enrichment	Binom Observed Region Hits	Binom Region Set Coverage	Hyper Rank	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Observed Gene Hits	Hyper Total Genes	Hyper Gene Set Coverage
embryonic morphogenesis	3	4.15E-06	0.012	2.19	39	0.141	6	2.59E-09	3.65	40	461	0.083
pattern specification process	4	9.05E-06	0.019	2.30	33	0.120	9	7.46E-08	3.66	34	390	0.071
embryonic organ development	9	1.75E-05	0.017	2.38	29	0.105	17	1.77E-06	3.68	28	320	0.058
embryonic organ morphogenesis	11	3.17E-05	0.025	2.62	23	0.083	22	3.67E-06	4.32	22	214	0.046
Regionalization	13	5.31E-05	0.035	2.47	24	0.087	29	1.91E-05	3.62	24	279	0.050
positive regulation of tooth mineralization	14	5.46E-05	0.033	42.61	3	0.011	151	3.21E-02	42.04	2	2	0.004
negative regulation of Notch signaling pathway	17	8.32E-05	0.042	18.02	4	0.014	111	7.06E-03	15.29	4	11	0.008
sensory organ development	19	9.14E-05	0.041	2.04	33	0.120	23	4.11E-06	3.23	31	403	0.064

Binom Rank: Binomial rank; Binom Raw P-Value: Binomial raw P-Value; Binom FDR q-val: Binomial false discovery rate q-value; Biom Fold Enrichment: Binomial Fold Enrichment; Binom Observed Region Hits: Binomial observed region hits and Binom Region Set Coverage: Binomial region set coverage.

Hyper Rank: Hyperbrowser rank; Hyper FDR q-val: Hyperbrowser false discovery rate q-value; Hyper Fold Enrichment: Hyperbrowser fold enrichment; Hyper observed gene Hits: Hyperbrowser total genes: Hyperbrowser total genes and Hyper gene Set Coverage: Hyperbrowser gene set coverage.

The test set of 276 genomic regions picked 481 (2%) of all 20,221 genes.

GO Biological Process has 8,583 terms covering 15,210 (75%) of all 20,221 genes, and 605,197 term - gene associations.

8,583 ontology terms (100%) were tested using an annotation count range of [1, Inf].

Table S11- Oligonucleotide Primers

Gene		Sequence
dejedinase jedethyropine type II	DIO2 Forward (Primer 1)	TCCTAGATGCCTACAAACAGGTTA
delodinase, lodotnyronine, type li	DIO2 Reverse (Primer 1)	GTCAGGTGGCTGAACCAAAG
daiadinasa iadathuranina tuna ll	DIO2 Forward (Primer 2)	GTCCGCAAATGACCCCTTT
	DIO2 Reverse (Primer 2)	CCCACCCACTCTCTGACTTTC
glycerol-3-phosphate acyltransferase,	GPAM Forward	ACAGTTGGCACAATAGACGTTT
mitochondrial	GPAM Reverse	CCTTCCATTTCAGTGTTGCAGA
1-acylolycerol-3-phosphate 0-acyltrapsferase 2	AGPAT2 Forward	CAGCCAGGTTCTACGCCAAG
	AGPAT2 Reverse	TGATGCTCATGTTATCCACGGT
staaroul Coopzyma A docatyraca 1	SCD1 Forward	TTCTTGCGATACACTCTGGTGC
stearbyr-coenzyme A desaturase 1	SCD1 Reverse	CGGGATTGAATGTTCTTGTCGT
fatturasidarunthasa	Fasn Forward	GGAGGTGGTGATAGCCGGTAT
	Fasn Reverse	TGGGTAATCCATAGAGCCCAG
sterol regulatory element binding transcription	SREBF-1c Forward	TGACCCGGCTATTCCGTGA
factor 1	SREBF-1c Reverse	CTGGGCTGAGCAATACAGTTC
ELOVL family member 6, elongation of long	ELOVL6 Forward	GAAAAGCAGTTCAACGAGAACG
chain fatty acids	ELOVL6 Reverse	AGATGCCGACCACCAAAGATA
ATD citrate luase	ACLY Forward	ACCCTTTCACTGGGGATCACA
	ACLY Reverse	GACAGGGATCAGGATTTCCTTG
cluster of differentiation 26	CD36 Forward	AGATGACGTGGCAAAGAACAG
	CD36 Reverse	CCTTGGCTAGATAACGAACTCTG
liver v recentor (NR1H3)	LXR Forward	CTCAATGCCTGATGTTTCTCCT
	LXR Reverse	TCCAACCCTATCCCTAAAGCAA
low density linearatein recentor	LDLR Forward	TGACTCAGACGAACAAGGCTG
	LDLR Reverse	ATCTAGGCAATCTCGGTCTCC
proprotein convertase subtilisin/kevin tuno 9	PCSK9 Forward	GAGACCCAGAGGCTACAGATT
proprotein convertase subtilisity kexili type 9	PCSK9 Reverse	AATGTACTCCACATGGGGCAA

Table S12 – Oligonucleotide Primers

Gene		Sequence
	PPARa Forward	AGAGCCCCATCTGTCCTCTC
peroxisome proliferator activated receptor alpha	PPARa Reverse	ACTGGTAGTCTGCAAAACCAAA
2 hydroxy 2 mathydutand CoA reductace	HMGCoAR Forward	AGCTTGCCCGAATTGTATGTG
S-invertoxy-S-internyighten yi-COA reductase	HMGCoAR Reverse	TCTGTTGTGAACCATGTGACTTC
acotul CoA carbovulaco alpha	ACC Forward	GCCTCTTCCTGACAAACGAG
	ACC Reverse	TGACTGCCGAAACATCTCTG
diaculalycorol O acultransforaço 2	DGAT2 Forward	GCGCTACTTCCGAGACTACTT
	DGAT2 Reverse	GGGCCTTATGCCAGGAAACT
sterol regulatory element binding transcription	SREBF2 Forward	GCAGCAACGGGACCATTCT
factor 2	SREBF2 Reverse	CCCCATGACTAAGTCCTTCAACT
195 rDNA	18S Forward	GTAACCCGTTGAACCCCATT
	18S Reverse	CCATCCAATCGGTAGTAGCG
cytochrome P450, family 7, subfamily A,	CYP7A1 Forward	ACCCAGACAGCGCTCTTTGA
polypeptide 1	CYP7A1 Reverse	CCATGATGCAAAACCTCCAAT
peroxisome proliferator-activated receptor	PPARg Forward	CCCACCAACTTCGGAATCA
gamma	PPARg Reverse	TGCGAGTGGTCTTCCATCAC
thuroid hormone responsive (Thrsn)	SPOT14 Forward	CTCGGAGGAGCTGGACCTA
	SPOT14 Reverse	GTGATGGAGGCTGCAGAAGT
carnitine nalmitov/transferase 1a	CPT1 Forward	TGAGTGGCGTCCTCTTTGG
	CPT1 Reverse	CAGCGAGTAGCGCATAGTCA
carbohydrate-responsive element-binding	ChREBP Forward	AGATGGAGAACCGACGTATCA
protein (MLXIPL)	ChREBP Reverse	ACTGAGCGTGCTGACAAGTC
natatin-like phospholinase domain containing 3	PNPLA3 Forward	TCACCTTCGTGTGCAGTCTC
	PNPLA3 Reverse	CCTGGAGCCCGTCTCTGAT
anolinoprotein A-I	APOA1 Forward	GGCACGTATGGCAGCAAGAT
	APOA1 Reverse	CCAAGGAGGAGGATTCAAACTG
ATP-binding cassette, sub-family A (ABC1),	ABCA1 Forward	GCTTGTTGGCCTCAGTTAAGG
member 1	ABCA1 Reverse	GTAGCTCAGGCGTACAGAGAT
phospholipase A1 member A	PLA1A Forward	GGTTGTGGGGACCACTTTTATG
	PLA1A Reverse	CACCTTGAGGTTGGTGCCT
solute carrier family 27 (fatty acid transporter),	SLC27A5 Forward	TCTATGGCCTAAAGTTCAGGCG
member 5	SLC27A5 Reverse	CTTGCCGCTCTAAAGCATCC
nhosnhate outidulultransferase 2. ethanolamine	PCYT2 Forward	CGATGGCTGCTATGACATGGT
	PCYT2 Reverse	GCCCCTTATGCTTGGCAATCT
uncounling protein 1	UCP1 Forward	AAGCTGTGCGATGTCCATGT
	UCP1 Reverse	AAGCCACAAACCCTTTGAAAA

	-			
ng/ul	Chow diet		HFD	
	Control	Liver- D2KO	Control	Liver- D2KO
Insulin	5.0±1.3	3.3±1.2	6.6±0.9	4.9±0.6
Leptin	3.5±0.3	2.8±0.3	8.9±3.0 ^ª	5.8±1.3
C-peptide	14±4.9	6.9±2.5	8.5±2.7	10±3.2
ΡΥΥ	0.3±0.08	0.2±0.02*	0.2±0.01	0.1±0.02*
PP	0.2±0.07	0.1±0.03*	0.06±0.04	0.06±0.01
Resistin	9.7±0.9	7.1±1.3	13±3.1	17±3.7 ^b

Table S13- Metabolic panel of ALB-D2KO and controlanimals kept on chow and high fat diet.

*p<0.05 vs respective control; a p<0.01 vs Control Chow Diet and ALB-D2KO chow Diet (ANOVA); b p<0.05 vs ALB-D2KO (ANOVA); values are the mean ± SEM of 5 independent samples.

Supplemental Experimental Procedures

Histology and in situ hybridization: Serial 12-µm thick coronal sections (Leica Microsystems GmbH, Wetzlar, Germany) were mounted on gelatine coated slides, airdried at 42°C overnight and stored at -80°C. A 801 bp of mouse D2 coding region (bases 155–956 of GeneBank) was cloned into pGemT vector (Promega) and used as probe. Mouse D2 cRNA antisense probe was generated with SP6 (Promega Corp., Madison, WI) polymerase after Ncol digestion in the presence of [S35] labelled UTP. Sense probe was generated after NotI digestion with T7 polymerase. Both probes were purified with Quick spin columns (Roche Applied Science, Mannheim, Germany). On the day of hybridization, 12 µm thick cryostat sections were thawed and fixed with 4% PFA for 10 min (1). After post-hybridization the sections were dehydrated with ascending concentrations of alcohol, air dried and dipped into Kodak NTB emulsion. Autoradiograms were developed kept at at 4oC and developed 6 weeks later. Counterstaining was with 0.005% Cresyl violet.

Microarray Analysis: Expression values (signal) of individual genes were log2 transformed. One-way ANOVA was used to calculate p-values for each fold change (linear); multi-testing correction was then performed using the Benjamini-Hochberg Step-Up FDR-controlling procedure for all the expressed genes; differentially expressed genes were tabled (Table S1; Table S16 and Table S18-19). Then gene ontology analysis was used to determine differences in enrichment of gene sets between phenotypes (Gene Set Enrichment Analysis (GSEA), Broad Institute). Expression values for all genes from all liver samples of both genotypes were used in the analysis. GSEA included calculation of enrichment scores (ES), estimation of significance level of ES (nominal p-value), and adjustment for multiple hypothesis testing including the normalized enrichment score (NES) and false discovery rate (FDR). Core enrichment of individual genes within these gene sets was indicated by GSEA and defined as those genes contributing to the leading edge subset (Table S2 and Table S17).

Methylome Analysis: MeDIP (Methylated DNA immunoprecipitation) and MRE (Methylation-sensitive Restriction Enzyme) sequencing libraries were constructed as previously described (2). Simply, genomic DNA from three controls and three ALB-D2KO animals kept on chow diet was extracted by phase lock gel (5 PRIM, USA). For MeDIP-seq, 500 ng genomic DNA was sonicated to ~100-500 bp with a Bioruptor sonicator (Diagenode). Sonicated DNA was end-repaired, A-tailed, and ligated to pair-end adapters. After AMPure XP beads purification (Beckman Coulter) to remove unligated adapters, adapter-ligated DNA was used for each immunoprecipitation using a mouse monoclonal anti-methylcytidine antibody (1 mg/ml, Eurogentec), 2 µl of rabbit anti-mouse IgG secondary antibody (2.5 mg/ml, Jackson Immunoresearch) and 100 µl Protein A/G beads (Pierce Biotechnology). After immunoprecipitation a total of 7-9 IP

washes were performed with ice cold IP buffer. The immunoprecipitated DNA was released from beads and purified by Qiagen MinElute columns. Twelve cycles of PCR were performed on the immunoprecipitated DNA using the pair end Illumina PCR primers. The resulting reactions are purified over Qiagen MinElute columns, after which a final size selection (220-520 bp) was performed by electrophoresis in 2% agarose. Libraries were QC'd by Qubit (Life Technologies) and Agilent DNA Tape Station and Bioanalyzer (Agilent) analysis. An aliquot of each library was diluted in Qiagen EB buffer to 10nM and 1 µl used as template in 4 independent PCR reactions to confirm enrichment for methylated and de-enrichment for unmethylated sequences, compared to input (sonicated DNA). Two positive controls (SNRPN and MAGEA1 promoters) and 2 negative controls (a CpG-less sequence on Chr15 and GAPDH promoter) were amplified by a real-time PCR. For MRE-seq, five methylation sensitive restriction endonucleases were used to digest intact genomic DNA, each digestion was performed with 500 ng of DNA. Five parallel digested DNA was precipitated with ethanol and combined into one tube. Combined DNA was size-selected by electrophoresis on a 1% agarose TAE gel. A 100-500 bp gel slice was excised using a sterile scalpel and gelpurified using Qiagen Qiaquick columns. Library construction was performed by end repair, A tailing and adapter ligation. The modified DNA was used as template for PCR with 15 cycles. After the second size selection (220-520 bp), DNA was gel purified with Qiagen MinElute columns, each library was examined by Qubit (Life Technologies) and Agilent DNA Tape Station and Bioanalyzer (Agilent).

Raw reads from sequencing machine were first applied adapter trimming and quality filtering using cutadapt tool (https://code.google.com/p/cutadapt/). The filtered reads were then aligned to mouse reference genome mm9 using BWA aligner (version 0.7.10, the mem alignment algorithm, http://bio-bwa.sourceforge.net/bwa.shtml). The alignment results were processed by methylQA (http://methylqa.sourceforge.net/) to generate reads density files visualized in WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/). M&M algorithm (3) (http://epigenome.wustl.edu/MnM/) was used to find differentially methylated region among control and KO samples with a p-value cutoff 1e-4, and methylCRF algorithm (4) (https://methylcrf.wustl.edu/) was used to estimate single CpG resolution methylation values. All processed data can be visualized from the WashU EpiGenome Browser hub at:

http://epigenomegateway.wustl.edu/browser/?genome=mm9&datahub=http://cgs.wustl. edu/~dli/bianco/hub. Coordinates of DMRs were used for function enrichment analysis using GREAT tool (http://great.stanford.edu, version 2.0.2) using default settings (http://www.nature.com/nbt/journal/v28/n5/abs/nbt.1630.html). We used seven-state chromHMM model data for liver from mouse ENCODE project

(http://www.nature.com/nature/journal/v515/n7527/full/nature13992.html), and verified overlap of all DMRs with the active/suppressed chromatin states. The center position of

one DMR was used for overlap checking. For calculating enrichment of any state, we divided while genome to 500-bp window as background, and same overlap was applied. Then the enrichment was calculated based on ratio over background. To compare overlap between gene expression from the liver microarray GSEAs and differentially methylated local regions (DMRs), individual genes demonstrating core enrichment within the enriched gene sets were entered into VENNY

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) where Venn diagrams were used to identify common genes. The statistical significance of overlap was calculated using hypergeometric test in R environment (<u>http://www.r-project.org/</u>).

Tissue T3 content: P1 Mice were anesthetized with isoflurane and perfused with liver perfusion medium (Gibco) through a needle placed in the left ventricle (LV). Tissues were snap frozen in liquid nitrogen and stored at - 80°C. T3 was extracted from whole liver using a method described previously (5) and T3 content was measured by RIA as previously detailed (6). Recovery was monitored by the addition of (125)-I-T3 before tissue extraction.

Western blot analysis: Tissues were lysed in 0.25M sucrose PE containing 10mM DTT. The lysates were diluted with 4X sample loading buffer (Invitrogen) and 20µg of total protein were run on 4-12% NuPAGE Bis-Tris Gels (Life Technologies, Carlsbad, CA). Samples were transferred to Immobilon-FL PVDF transfer membrane (Millipore, Billerica, MA) and probed with antibodies as indicated at a 1:1000 dilution overnight. Fluorescent labeled secondary antibodies (LiCOR Biosciences, Lincoln, NE) were used at 1:2500 for 1 h. All blots were imaged using LiCOR Odyssey instrument per manufacturer's instructions (LiCOR Biosciences, Lincoln, NE).

T3 production in intact cells: Fresh P1 livers were macerated and posterior washed in 4ml of Leibowitz medium containing 0.1% BSA. 500,000K ¹²⁵I-T4 was added to the medium of intact cells and incubated for 4h with 0.1nM of T4 and 1mM of PTU. At the end of the experiment, the cells were centrifuged and 400uL of medium was transferred to a new tube where the reaction was stopped with 2:1 horse serum/TCA. Samples were centrifuged and ¹²⁵I was counted on the gamma counter.

T3 responsiveness: Hypothyroidism was induced by iodine deficient diet with 0.15% PTU (TD 95 125; Harlan Teklad, Indianapolis, IN) and 0.05% of MMI in drinking water for 2 weeks. 2h before the sacrifice the animals were injected with 5ug T3 in a single injection ip.

Supplemental References

- 1. Gereben B, Pachucki J, Kollar A, Liposits Z, & Fekete C (2004) Ontogenic redistribution of type 2 deiodinase messenger ribonucleic Acid in the brain of chicken. *Endocrinology* 145(8):3619-3625.
- 2. Li D, Zhang B, Xing X, & Wang T (2015) Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. *Methods* 72:29-40.
- 3. Zhang B, *et al.* (2013) Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. *Genome Res* 23(9):1522-1540.
- 4. Stevens M, et al. (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. *Genome Res* 23(9):1541-1553.
- 5. Morreale de Escobar G, Pastor R, Obregon MJ, & Escobar del Rey F (1985) Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. *Endocrinology* 117(5):1890-1900.
- 6. Ferrara AM, et al. (2013) Changes in Thyroid Status During Perinatal Development of MCT8-Deficient Male Mice. *Endocrinology* 154(7):2533-2541.